- Home »
- A bulk-boundary correspondence with factorization algebras

COVID-19 information for PI Residents and Visitors

Factorization algebras provide a flexible language for describing the observables of a perturbative QFT, as shown in joint work with Kevin Costello. In joint work with Eugene Rabinovich and Brian Williams, we extend those constructions to a manifold with boundary for a special class of theories that includes, as an example, a perturbative version of the correspondence between chiral U(1) currents on a Riemann surface and abelian Chern-Simons theory on a bulk 3-manifold. Given time, I'll sketch a systematic higher dimensional version for higher abelian CS theory on an oriented smooth manifold of dimension 4n+3 with boundary a complex manifold of complex dimension 2n+1. (This talk will be very informal.)

COVID-19 information for PI Residents and Visitors

Collection/Series:

Event Type:

Seminar

Scientific Area(s):

Speaker(s):

Event Date:

Thursday, January 9, 2020 - 11:00 to 12:30

Location:

Sky Room

Room #:

394

Share This PageShare this on TwitterShare on FacebookPublish this post to LinkedInSubmit this post on reddit.com

©2012 Perimeter Institute for Theoretical Physics