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Abstract

We offer some, hopefully clarifying, comments on Verlinglegcent claim
that gravity is an entropic force. A suitable identificatmfrquantities shows
that both formulations of Newtonian gravity, the classiaatl the thermo-
dynamical one, are actually equivalent. It turns out thateadditional as-
sumptions made by Verlinde are unnecessary. However, vihmomies to
General Relativity there remain some gaps in the argumeatMhment on
whether this identification can be done also for electragtafinally, some
thoughts on the use of this reinterpretation are offered.

1 Introduction

The purpose of this brief note is to offer some clarifying dewon the logic of
Verlinde’s recent paper [1]. In his paper Verlinde showedt {time-independent)
Newtonian gravity is an entropic force and claimed it todallfrom a thermody-
namical description that has certain holographic propertBelow, we will make
this statement more precise. We will further show that tlvense is also true, i.e.
it follows from Newtonian gravity that it can be describedaasentropic force with
holographic properties. We are thus lead to conclude batbriidions are equiva-
lent and, after a suitable identification of quantities,tttemodynamical character
of gravity is a reinterpretation.

Let us first state precisely what we mean. Let there be givdragge distribu-
tion p which is a density. Then, static Newtonian gravity can beattarized as
follows:

A: There is a scalar fielg which obeys the Poisson equatioig =
4nGp. A test-massnin the background field of a ma#4 with field
@uv experiences a forde = mOqy.
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Here, G is some coupling constant. Verlinde’'s proposal instead lwarmast as
follows

B: There are two scalar quantiti8&andT and a continuous set of non-
intersecting surfaces, the ‘holographic screens, whose union covers
all of spaceR® = US. The theory is defined bym pdV = [(TdAVS,

and the force acting on a particle with test-masis given byFox =

/5 TadS, where the integral is taken over a screen that does not ieclud
the test-mass.

Here, () denotes the volume with surface The volume integral/ ;) dVp is
of course just the total mass inside that volume, and thetfjiesnS and T are
interpreted as the entropy respectively temperature ondlographic screens. The
Ox is a virtual variation on the location on the particle whidliices a change in
the entropy on the screen, the details will become clear. late

The statemenB is not actually exactly what Verlinde claimed in [1], in dast
ular he did not use the functidBitself but merely its differentialS. He further
defined another quantity a surface entropy density, with help of whigtS= &s.
The other difference is that Verlinde defines the screengiag lequipotential sur-
faces forg. However, in the thermodynamical approagtshould not enter the
formulation of the theory since it's what one wants to getaid Thus the above
formulationB avoids referring to the screens as equipotential surfatledl come
back to this later.

Before we get to the derivation, let's have a brief look atetestatics, since it
is apparent thaf could equally have been about electric charges. To avoid hav
ing to constantly distinguish two cases, we convert thegghés mass dimension
one, and the potential to mass dimension zero by multiplyith powers of the
Planck massnp and subsume the remainder in the coupling constant. Foaie ¢
of gravity there’s nothing to do. For electrostatics we ha@ve mpiQ, @ = @/mp,
where the quantities with tildes are the usual ones. Thigsssg rescaling, also
used in [2], that will make the following apply for both casé&e will thus gen-
erally refer to a charge and labelgt but this charge could be a mass. We will on
some places comment on the differences between elecicsstatd gravity. Note
that with the sign convention @&, which we use to be in agreement with [1], a
graviational potentiadp is actually negative.

We'll use the unit conventiotn = ¢ = 1 such thaimp; = 1/lp;. We will con-
sider the case with 3 spatial dimensions, such @at |3, though the number of
dimensions doesn’'t matter much

1The case with only one dimension is pathological. To begih Wecause a point doesn’t have a
surface.



2 It followsfrom Newtonian Gravity that it'san Entropic
Force

Now let us come to the derivation. Verlinde in his paper ckdinio have shown
B = A. We will thus look atA =- B, and start with the scalar fietdobeying the
Poisson equation.

The field will have equipotential surfaces of codimensionhere®(X) = con-
stant. We identify these surfaces with the holographicese That's the first
ingredient toB. The values of these surface areas should be a smooth fanictio
particular it won't have gaps. Each of these surface has malorector in every
point that we’'ll denote aB. This normal vector might be ill-defined in some points.
For example a Lagrange-point has an indefinite normal vegtba particle was
placed exactly at this point, it would stay there.) Note thdahe general case these
surfaces will not be simply connected, but consist of sé\mezes.

Let us assign the corresponding surfagp) to every value ofg on S and
normalize it to a unit aredg = G. We then define the following scalar function

s =00 i @
Here,S is some additive constant. Suggestively nar§dd the case of gravity the
function reduces to the black hole entropy fee 2MG. We further define another
scalar quantity

T®i= 500 . @

which is the derivative in direction of the normal vector e tequipotential sur-
face. For the case of gravity again it reduces to the black kminperature at
the horizon. The quantity can always be constructed, where the normal vector
is well-defined. For gravity where like charges attract dmetd’s only positive
chargesT is positive definite, but for electric fields this will not genally be the
case.

It then follows by use of Gauss’ law from the Poisson equatiwat on any
equipotential surface

1
dV:—/D A:/Tds, 3
/(S)p i [ DA | 3)

which is the second ingredient Bx Note that this is not true for general surfaces
since the normal used to define the temperature will in gémetsbe the normal
of the surface. Let us further recall the potential energthefsystem is

U:—/p(pdV , (4)
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which might contain divergent self-energy contributiohatthave to be suitably
omitted (recall that with our sign conventiam< 0). Now consider a test-particle
with chargeq at locationrg in the background of a chargg > g contained within
a compact volume. The background field has potemgabnd the test-particle
has the potentiaf, which by use of the Poisson-equation is just the ugyak
—Gq/|r —ro|. Now we ask what force we have to apply to change the tesicleest
location bydx. Itis

_ 1 7 5

Fax_au_—/deép_—ﬁ/dem 5 (5)
where the integral is taken over some volume that it inclubledest-particle, but
not the background charges, i.e. it is outside some surfaibrdy both. Note that
this has nothing to do with thermodynamics or holographytadever.

We will now repeat the steps used in [1]. First, we set themadhe integral
is taken over to be the volume inside an equipotential sarédeqg such that the
test-particle is outside that surface. We denote thatseufathe volume insidé.s)
and the volume outsid&3\ ($). We start with rewriting the volume integral in an
integral over all of space minus the integral over the insiohel then transform the
volume over the inside by making use of Green’s second ijefsiee Appendix).
One obtains

_ _ 2 _ 2 _
ATG3U /RachD SV /(5)5%5 (deV+/5(5th(pQ @o15Gy) A (6)

Since we are integrating over an equipotential surfacepfprin the second
term in the surface integral we can pull opg. Then we rewrite that surface-
integral again in a volume integral ovés) by making use of Gauss’s law. We
then see that it vanishes becaggeloes not have sources inside the volume. The
second term with the volume integral over the inside we tevagain in a volume
integral overR3 minus an integral oveR3\(S). The integral over the outside
vanishes becausg, does not have sources there. We are then left with

4G = / ((@o125¢y — 3y %) V. + / S godA . %
R3 S

For any finite volume, the remaining volume integral can bienr as a surface
integral making use of Green’s 2nd identity again. One tless shat the integral
vanishes if the surface is moved to infinity as long as thecgsuare compact.
Thus, we finally arrive at

—

1
Féxz—ﬁfsé(qu(deA , @®)
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where the surface integral could have been taken over angaguatial surface for
the background fieldy, if the test-particle is not inside the volume enclosed by the
surface. At such a fixed surface we haweds = —Adg, and the surface element
is? 8dS= —d@,dA thus

ﬁaxZ/Tads. )
S

This completes the derivatioh = B.

One should note two points about this derivation. One isweghave not made
a variation of the surface. We have instead made a variafitimegootential on a
the fixed surface, induced by wiggling the location of the-festicle. The other
point is that all steps from Eq. (5) to Eq. (8) can be reversed the final step from
Eq.(8) to EQ.(9), one uses the identification of the thermadyical quantities with
the Newtonian potential.

Sincedqy is not constant og it is somewhat cumbersome but one can work out
the integral on the right side of Eq.(8) for the case of twaponasses and obtain
the usual Newtonian gravitational force or Coulomb law eetpely. This should
not surprise us, since all we have done is using integraltitiksn for harmonic
functions.

It is apparent that this derivation does not make use of tlacier of the
charge. However, let us look at a very simple case to see véhthgrmodynamic
analogy does not make much sense for electrodynamics. d&nsio point-
chargesy; andq, very far away from each other, and an equipotential surfatte w
value@. If the charges are far enough away from each other, to gaszision the
area of the equipotential surface is

2

ACh +AQ2 = 4T[G(p(2) (qi + q%) . (10)

Now we put the two charges very close together, and find thatatka of the
equipotential surface changes to

2
Ag+g = 4“% (Q+ QZ)Z . (11)

Now for gravity, two positive charges (masses) attract. his process when the
masses approach each other one thus has an increase in #heasofface, pro-
portional toq;qp. ldentifying the change of area for a constant valuepofith

the change in entropy, the entropy appropriately increddesvever, for the elec-
tromagnetic interaction it's opposite charges that attr@sulting in a decrease of

2This is theds in Verlinde's paper.



area or ‘entropy’ sincei02 is now negative. This is in agreement with our previous
observation that for electrodynamics the ‘temperatureldde negative.

Thus, while the derivation above can also be made for elgetiios, the inter-
pretation ofSandT in thermodynamical terms does not seem meaningful. Only if
the force is attractive between like charges the assoniatith an entropic force
makes sense. If one starts with assuming that gravity is anpga force then, as
pointed out by Smolin in [3], this means gravity is attraethetween like charges.

It does not exclude however that there are negative grengtcharges, just that
if there were opposite charges one would have to do work toghihem closer
together sincelA, dS < 0 in that process.

3 Newtonian Gravity followsfrom an Entropic ForceL aw

For completeness, the following is a repetition of Verlisdargument with some
further remarks. As mentioned previously, absent a grémital potential we
should not define the ‘*holographic screens’ as its equipiaiesurfaces. One could
think of instead defining them as surfaces of constant eptitdpwever, from our
previous identification of quantitie<GE= @A(@), we see that a surface of constant
@ is a surface of constarg but the reverse might not necessarily be true since a
change inp could be balanced by a change in area.

For a monopole (or far distance field), drops slower than the area of its
equipotential surfaces increases. The entropy thus isesemonotonically with
distance and thus the surfaces of consgdob identify the surfaces of constant
However, when we think of higher multipole moments, this Imigot generally be
true’. But we have additional information if. With it, we can define a screen
S as a surface with constant entropy that fulfils the reIatiGd@) pdV = [(TdA
in every point. On these screens with afga ), we can then get back the Newto-
nian potential by defining it a = 2GS/A(S). Consequently, if we make a small
change tdSon a constant surface, we had@= 2G3S/A(S).

Having all quantities necessary far, the rest of the argument is then an exact
reversal of the steps in the previous section, with one ihdit subtlety. If one
knows that 4[Gf(z) dVp = s On@dA holds for every surfacg with normal vector
A, then one can easily conclude tlpatnust fulfill the Poisson equation. However,
we only have this relation for equipotential surfaces. Thesing information is
in the shape of the surfaces themselves. This can be seetlomssfoThe charge
distribution p and the normal on the (known) surface constitutes a case eua N
mann boundary condition and if the field fulfills the Poissqoagion it is uniquely
specified up to a constant. If there was another, differeitition not fulfilling

3At least it is not obvious to me. Comments are welcome.



the equation, it would have to differ from the solution to B@sson equation in at
least one point. But this would mean the equipotential sefehad to be shifted
and thus cannot be.

Taken together, we have thus shown that> B.

4 Remarks

The numberN of ‘bits’ on the screen made no appearance here. In pantjcula
making the “identification for the temperature and the infation density on the
holographic screens” [1] might be “natural” but is unneeggsin any case if one
uses thaA = GN then to obtain Eq.(9), we keptand thusN constant. Since the
missing variation with respect td was criticized in [4, 5], let us point out there
is nothing inconsistent about this, one just has to be chadfout stating which
quantities are held fix (as usual in thermodynamics). Sineelid not needN, the
equipartition theorem also does not play a role.

Further, for the above it was unnecessary to use/iBas proportional toAx.
This is just a shortcut to arrive at Newton’s gravitationaice law, but not neces-
sary for the general case which deals with the variation @fefitropy on a screen
induced by varying the position of the test-particle. SitieerelatiomAST Ax does
not enter the derivation, it is moot to dissect its meaninggubs the constant of
proportionality, or the appropriateness in general cadee. also does not actually
need any knowledge about the Unruh-effect, though this kedge helps to give
meaning to the definition of the temperature.

It should be emphasized that the directiBn=- A is the more complicated
direction of the equivalence. This is partly due to the id&xttion of the potential.
But mostly it is due tdA being a description available in the whole volume and all
its surfaces, whil& makes use only of specific surfaces. That both are equivalent
nevertheless is a consequence of the specific propertiesubioss to the Poisson
equation.

In the later sections of [1] the argument is extended from fdai@n gravity to
General Relativity (GR) in a spacetime with a time-like ikij vector. From the
argument presented there, one seesAhat B can be extended to GR. However,
the assumptions for the reverse claim, that gravity follénesn thermodynamics,
rely heavily on knowledge about GR already: Instead of dedinihe gravitational
potential from thermodynamical quantities, the tempeeaisi defined making use
of the GR generalization of the gravitational potential.emiters the (previously
defined) killing vector. The definition of screens still haie same problem as in
the Newtonian case. Later it is moreover used that the toémsnnside a vol-
ume can be rewritten in terms of the stress-energy-tenadrireaddition that this
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stress-energy-tensor is covariantly conserved. One alsadduse the equivalence
principle when going into a locally Minkowski frame. Finglione might wonder
if, absent something like a space-time, it was appropratesé derivatives to begin
with, or if these should not also ‘emerge’ in some sense.

5 Discussion

In any case, it presently does not seem impossible to fix the gainted out in the
previous section, so let us for now consider there was indetb@rmodynamical
description equivalent to GR. This then raises two questidvihat does this mean?
and What is it good for?

In the previous sections we avoided an interpretation oféf@rmulation sug-
gested by Verlinde. It remains to be clarified whether theraare justification for
referring to the quantities in thermodynamical terms. Qfrse one wonders what
it's supposed to mean that any point in spacetime is now agedcwith a tem-
perature. For the case of a black hole horizon there is amlggfuticle emission
associated to the temperature. Should we now expect aybdtreeens to also emit
particles?

Well, first a screen that is not a black hole horizon does neé lzaproblem
emitting particles. It is clear where they come from: theyneofrom the next
screen closer to a source and can be traced back to the sohicle & a sink
of field lines. The problem with a horizon is just that all mattrossing it are
classically forbidden. However, the temperature of anjhsereen is ridiculously
small and entirely negligible for all practical purposesonSider a proton with
a mass ofm, ~ GeV. Assuming it has a has a typical size~ofl/my, it has a
surface temperature af ~ my(my/mp|)? ~ 10-2%eV. Asking how long it would
take for the proton to noticeably lose a quantum of energycameas usual integrate
dM/dt ~ R?T*#. One finds that it would take about ¥ times the current age of
the universe for the proton to decay in that fashion. We céalyséorget about
that*.

In any case, if observable consequences of the reintetipretae such remote,
what is it good for? Clearly, the equivalence of two formiglas for the gravita-
tional interaction is not the interesting aspect. As londgash descriptions are
the same claiming “the redshift must be seen as a conseqoétioeentropy gra-
dient and not the other way around” [1] is merely words. Therigsting aspect
of the reformulation would be to make use of it in regimes \ehthie equivalence

4That this number is so large compared to the black hole tesmyreris becaus® scales with
the third power of the mass rather than with the inverse ofithss as is the case for a black hole
horizon.



might no longer hold. The thermodynamical description movide a bridge to
a statistical mechanics description of a possibly undeglyheory.

We know that gravity is not easy to quantize, and there aresoas cannot de-
scribe by use of GR. The question is whether in these casesiadhgravity might
cease to be meaningful, but the thermodynamic relationsre@nto hold, thus
making them accessible to us. However, before one stankitigi about quantum
gravity one should maybe try to first reproduce at least quannechanics in a
classical background field. The next step could then be gdkinthe description
of the gravitational force exerted by a superposition statech is already a case
where a classical description of the particle’s gravitaidfield fails.

Another remark, mentioned before in [4], is that we do haveraddmental
theory for electrodynamics that is extremely well testeithc& formally the iden-
tification with thermodynamics can also be made for eletdtas it might be illu-
minating to find out whether it continues to hold under quaiibn. And then it
should be clarified what to do about solutions of the Laplateti®ns, i.e. how to
reproduce gravitational waves.

Finally, let's come back to the claim that according to tiefrmulation, grav-
ity has a holographic character. Since the thermodynarimteaipretation is just an
equivalent rewriting there’s no more holography in it thiare was in Newtonian
gravity or electrostatics till last year. Arguably one abahy though that harmonic
functions do have ‘holographic’ properties, encoded by sSauand Stoke’s inte-
gral identities that we heavily made use of. Rather thanldpgaf holography, it
might be more appropriate to refer to such a theory that daes bulk degrees of
freedom but allows for a holographic description as ‘hadgudpic friendly, mean-
ing it might possibly be extendable to regimes where bulkekesg of freedom are
indeed not availabfe
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Appendix

For convenience, here is Gauss’s law

/(z) O2gdV = /z OnPdA . (12)

SLee Smolin, private communication.



and Green’s 2nd identity
[ (WPe-gPp)av = [ (We— gp)dA. 13)
=) b3

where, as previously,Z) denotes the volume inside a surfateand ], is the
derivative in direction of the surface’s normal vectprandg are both scalar fields.
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