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Abstract

We offer some, hopefully clarifying, comments on Verlinde’s recent claim
that gravity is an entropic force. A suitable identificationof quantities shows
that both formulations of Newtonian gravity, the classicaland the thermo-
dynamical one, are actually equivalent. It turns out that some additional as-
sumptions made by Verlinde are unnecessary. However, when it comes to
General Relativity there remain some gaps in the argument. We comment on
whether this identification can be done also for electrostatics. Finally, some
thoughts on the use of this reinterpretation are offered.

1 Introduction

The purpose of this brief note is to offer some clarifying words on the logic of
Verlinde’s recent paper [1]. In his paper Verlinde showed that (time-independent)
Newtonian gravity is an entropic force and claimed it to follow from a thermody-
namical description that has certain holographic properties. Below, we will make
this statement more precise. We will further show that the reverse is also true, i.e.
it follows from Newtonian gravity that it can be described asan entropic force with
holographic properties. We are thus lead to conclude both descriptions are equiva-
lent and, after a suitable identification of quantities, thethermodynamical character
of gravity is a reinterpretation.

Let us first state precisely what we mean. Let there be given a charge distribu-
tion ρ which is a density. Then, static Newtonian gravity can be characterized as
follows:

A: There is a scalar fieldφ which obeys the Poisson equation∇2φ =
4πGρ. A test-massm in the background field of a massM with field
φM experiences a force~F = m~∇φM.
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Here, G is some coupling constant. Verlinde’s proposal instead canbe cast as
follows

B: There are two scalar quantitiesS andT and a continuous set of non-
intersecting surfacesS , the ‘holographic screens,’ whose union covers
all of spaceR3 = ∪S . The theory is defined by

∫

(S) ρdV =
∫

S
T dA ∀S ,

and the force acting on a particle with test-massm is given byFδx =
∫

S
T δdS, where the integral is taken over a screen that does not include

the test-mass.

Here, (S) denotes the volume with surfaceS . The volume integral
∫

(S) dV ρ is
of course just the total mass inside that volume, and the quantities S and T are
interpreted as the entropy respectively temperature on theholographic screens. The
δx is a virtual variation on the location on the particle which induces a change in
the entropy on the screen, the details will become clear later.

The statementB is not actually exactly what Verlinde claimed in [1], in partic-
ular he did not use the functionS itself but merely its differentialdS. He further
defined another quantitys, a surface entropy density, with help of whichδdS = δs.
The other difference is that Verlinde defines the screens as being equipotential sur-
faces forφ. However, in the thermodynamical approachφ should not enter the
formulation of the theory since it’s what one wants to get ridof. Thus the above
formulationB avoids referring to the screens as equipotential surfaces.We’ll come
back to this later.

Before we get to the derivation, let’s have a brief look at electrostatics, since it
is apparent thatA could equally have been about electric charges. To avoid hav-
ing to constantly distinguish two cases, we convert the charge to mass dimension
one, and the potential to mass dimension zero by multiplyingwith powers of the
Planck massmPl and subsume the remainder in the coupling constant. For the case
of gravity there’s nothing to do. For electrostatics we haveQ = mPlQ̃, φ = φ̃/mPl,
where the quantities with tildes are the usual ones. This is just a rescaling, also
used in [2], that will make the following apply for both cases. We will thus gen-
erally refer to a charge and label itq, but this charge could be a mass. We will on
some places comment on the differences between electrostatics and gravity. Note
that with the sign convention ofA, which we use to be in agreement with [1], a
graviational potentialφ is actually negative.

We’ll use the unit convention ¯h = c = 1 such thatmPl = 1/lPl. We will con-
sider the case with 3 spatial dimensions, such thatG = l2

Pl, though the number of
dimensions doesn’t matter much1.

1The case with only one dimension is pathological. To begin with because a point doesn’t have a
surface.
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2 It follows from Newtonian Gravity that it’s an Entropic
Force

Now let us come to the derivation. Verlinde in his paper claimed to have shown
B ⇒ A. We will thus look atA ⇒ B, and start with the scalar fieldφ obeying the
Poisson equation.

The field will have equipotential surfaces of codimension 1 whereφ(~x) = con-
stant. We identify these surfaces with the holographic screens. That’s the first
ingredient toB. The values of these surface areas should be a smooth function, in
particular it won’t have gaps. Each of these surface has a normal vector in every
point that we’ll denote as~n. This normal vector might be ill-defined in some points.
For example a Lagrange-point has an indefinite normal vector. (If a particle was
placed exactly at this point, it would stay there.) Note thatin the general case these
surfaces will not be simply connected, but consist of several pieces.

Let us assign the corresponding surfaceA(φ) to every value ofφ on S and
normalize it to a unit areaA0 = G. We then define the following scalar function

S(~x) := −φ(~x)
A(φ)

2G
+ S0 , (1)

Here,S0 is some additive constant. Suggestively namedS, in the case of gravity the
function reduces to the black hole entropy forr = 2MG. We further define another
scalar quantity

T (~x) :=
1
2π

∇nφ , (2)

which is the derivative in direction of the normal vector on the equipotential sur-
face. For the case of gravity again it reduces to the black hole temperature at
the horizon. The quantityT can always be constructed, where the normal vector
is well-defined. For gravity where like charges attract and there’s only positive
chargesT is positive definite, but for electric fields this will not generally be the
case.

It then follows by use of Gauss’ law from the Poisson equationthat on any
equipotential surface

∫

(S)
ρdV =

1
4πG

∫

S

∇nφdA =

∫

S

T dS , (3)

which is the second ingredient toB. Note that this is not true for general surfaces
since the normal used to define the temperature will in general not be the normal
of the surface. Let us further recall the potential energy ofthe system is

U = −

∫

ρφdV , (4)
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which might contain divergent self-energy contributions that have to be suitably
omitted (recall that with our sign conventionφ < 0). Now consider a test-particle
with chargeq at locationr0 in the background of a chargeQ � q contained within
a compact volume. The background field has potentialφQ and the test-particle
has the potentialφq which by use of the Poisson-equation is just the usualφq =
−Gq/|r−r0|. Now we ask what force we have to apply to change the test-particle’s
location byδx. It is

~Fδ~x = δU = −

∫

dV φQδρ = −
1

4πG

∫

dV φQ∇2δφq , (5)

where the integral is taken over some volume that it includesthe test-particle, but
not the background charges, i.e. it is outside some surface dividing both. Note that
this has nothing to do with thermodynamics or holography whatsoever.

We will now repeat the steps used in [1]. First, we set the volume the integral
is taken over to be the volume inside an equipotential surface of φQ such that the
test-particle is outside that surface. We denote that surfaceS , the volume inside(S)
and the volume outsideR3\(S). We start with rewriting the volume integral in an
integral over all of space minus the integral over the inside, and then transform the
volume over the inside by making use of Green’s second identity (see Appendix).
One obtains

−4πGδU =
∫

R3
φQ∇2δφqdV −

∫

(S)
δφq∇2φQdV +

∫

S

(δφq∇φQ −φQ∇δφq)dA . (6)

Since we are integrating over an equipotential surface forφQ, in the second
term in the surface integral we can pull outφQ. Then we rewrite that surface-
integral again in a volume integral over(S) by making use of Gauss’s law. We
then see that it vanishes becauseφq does not have sources inside the volume. The
second term with the volume integral over the inside we rewrite again in a volume
integral overR3 minus an integral overR3\(S). The integral over the outside
vanishes becauseφQ does not have sources there. We are then left with

−4πGδU =
∫

R3

(

φQ∇2δφq −δφq∇2φQ
)

dV +
∫

S

δφq∇φQdA . (7)

For any finite volume, the remaining volume integral can be written as a surface
integral making use of Green’s 2nd identity again. One then sees that the integral
vanishes if the surface is moved to infinity as long as the sources are compact.
Thus, we finally arrive at

~Fδ~x = −
1

4πG

∫

S

δφq∇φQdA , (8)
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where the surface integral could have been taken over any equipotential surface for
the background fieldφQ if the test-particle is not inside the volume enclosed by the
surface. At such a fixed surface we have 2GδS = −Aδφq and the surface element
is2 δdS = −δφqdA thus

~Fδ~x =

∫

S

T δdS . (9)

This completes the derivationA ⇒ B.
One should note two points about this derivation. One is thatwe have not made

a variation of the surface. We have instead made a variation of the potential on a
the fixed surface, induced by wiggling the location of the test-particle. The other
point is that all steps from Eq. (5) to Eq. (8) can be reversed.For the final step from
Eq.(8) to Eq.(9), one uses the identification of the thermodynamical quantities with
the Newtonian potential.

Sinceδφq is not constant onS it is somewhat cumbersome but one can work out
the integral on the right side of Eq.(8) for the case of two point-masses and obtain
the usual Newtonian gravitational force or Coulomb law respectively. This should
not surprise us, since all we have done is using integral identities for harmonic
functions.

It is apparent that this derivation does not make use of the character of the
charge. However, let us look at a very simple case to see why the thermodynamic
analogy does not make much sense for electrodynamics. Consider two point-
chargesq1 andq2 very far away from each other, and an equipotential surface with
valueφ0. If the charges are far enough away from each other, to good precision the
area of the equipotential surface is

Aq1 + Aq2 = 4π
G2

φ2
0

(

q2
1 + q2

2

)

. (10)

Now we put the two charges very close together, and find that the area of the
equipotential surface changes to

Aq1+q2 = 4π
G2

φ2
0

(q1 + q2)
2 . (11)

Now for gravity, two positive charges (masses) attract. In this process when the
masses approach each other one thus has an increase in area ofthe surface, pro-
portional toq1q2. Identifying the change of area for a constant value ofφ with
the change in entropy, the entropy appropriately increases. However, for the elec-
tromagnetic interaction it’s opposite charges that attract, resulting in a decrease of

2This is theδs in Verlinde’s paper.
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area or ‘entropy’ sinceq1q2 is now negative. This is in agreement with our previous
observation that for electrodynamics the ‘temperature’ could be negative.

Thus, while the derivation above can also be made for electrostatics, the inter-
pretation ofS andT in thermodynamical terms does not seem meaningful. Only if
the force is attractive between like charges the association with an entropic force
makes sense. If one starts with assuming that gravity is an entropic force then, as
pointed out by Smolin in [3], this means gravity is attractive between like charges.
It does not exclude however that there are negative gravitational charges, just that
if there were opposite charges one would have to do work to bring them closer
together sincedA,dS < 0 in that process.

3 Newtonian Gravity follows from an Entropic Force Law

For completeness, the following is a repetition of Verlinde’s argument with some
further remarks. As mentioned previously, absent a gravitational potential we
should not define the ‘holographic screens’ as its equipotential surfaces. One could
think of instead defining them as surfaces of constant entropy. However, from our
previous identification of quantities 2GS = φA(φ), we see that a surface of constant
φ is a surface of constantS, but the reverse might not necessarily be true since a
change inφ could be balanced by a change in area.

For a monopole (or far distance field),φ drops slower than the area of its
equipotential surfaces increases. The entropy thus increases monotonically with
distance and thus the surfaces of constantS do identify the surfaces of constantφ.
However, when we think of higher multipole moments, this might not generally be
true3. But we have additional information inT . With it, we can define a screen
S as a surface with constant entropy that fulfils the relation 2G

∫

(S) ρdV =
∫

S
T dA

in every point. On these screens with areaA(S), we can then get back the Newto-
nian potential by defining it asφ = 2GS/A(S). Consequently, if we make a small
change toS on a constant surface, we haveδφ = 2GδS/A(S).

Having all quantities necessary forA, the rest of the argument is then an exact
reversal of the steps in the previous section, with one additional subtlety. If one
knows that 4πG

∫

(Σ) dV ρ =
∫

Σ ∇nφdA holds for every surfaceΣ with normal vector
~n, then one can easily conclude thatρ must fulfill the Poisson equation. However,
we only have this relation for equipotential surfaces. The missing information is
in the shape of the surfaces themselves. This can be seen as follows. The charge
distributionρ and the normal on the (known) surface constitutes a case of a Neu-
mann boundary condition and if the field fulfills the Poisson equation it is uniquely
specified up to a constant. If there was another, different, solution not fulfilling

3At least it is not obvious to me. Comments are welcome.
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the equation, it would have to differ from the solution to thePoisson equation in at
least one point. But this would mean the equipotential surfaces had to be shifted
and thus cannot be.

Taken together, we have thus shown thatA ⇔ B.

4 Remarks

The numberN of ‘bits’ on the screen made no appearance here. In particular,
making the “identification for the temperature and the information density on the
holographic screens” [1] might be “natural” but is unnecessary. In any case if one
uses thatA = GN then to obtain Eq.(9), we keptA and thusN constant. Since the
missing variation with respect toN was criticized in [4, 5], let us point out there
is nothing inconsistent about this, one just has to be careful about stating which
quantities are held fix (as usual in thermodynamics). Since we did not needN, the
equipartition theorem also does not play a role.

Further, for the above it was unnecessary to use that∆S is proportional to∆x.
This is just a shortcut to arrive at Newton’s gravitational force law, but not neces-
sary for the general case which deals with the variation of the entropy on a screen
induced by varying the position of the test-particle. Sincethe relation∆S ∝ ∆x does
not enter the derivation, it is moot to dissect its meaning, discuss the constant of
proportionality, or the appropriateness in general cases.One also does not actually
need any knowledge about the Unruh-effect, though this knowledge helps to give
meaning to the definition of the temperature.

It should be emphasized that the directionB ⇒ A is the more complicated
direction of the equivalence. This is partly due to the identification of the potential.
But mostly it is due toA being a description available in the whole volume and all
its surfaces, whileB makes use only of specific surfaces. That both are equivalent
nevertheless is a consequence of the specific properties of solutions to the Poisson
equation.

In the later sections of [1] the argument is extended from Newtonian gravity to
General Relativity (GR) in a spacetime with a time-like killing vector. From the
argument presented there, one sees thatA ⇒ B can be extended to GR. However,
the assumptions for the reverse claim, that gravity followsfrom thermodynamics,
rely heavily on knowledge about GR already: Instead of defining the gravitational
potential from thermodynamical quantities, the temperature is defined making use
of the GR generalization of the gravitational potential. Itenters the (previously
defined) killing vector. The definition of screens still has the same problem as in
the Newtonian case. Later it is moreover used that the total mass inside a vol-
ume can be rewritten in terms of the stress-energy-tensor, and in addition that this
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stress-energy-tensor is covariantly conserved. One also has to use the equivalence
principle when going into a locally Minkowski frame. Finally, one might wonder
if, absent something like a space-time, it was appropriate to use derivatives to begin
with, or if these should not also ‘emerge’ in some sense.

5 Discussion

In any case, it presently does not seem impossible to fix the gaps pointed out in the
previous section, so let us for now consider there was indeeda thermodynamical
description equivalent to GR. This then raises two questions: What does this mean?
and What is it good for?

In the previous sections we avoided an interpretation of thereformulation sug-
gested by Verlinde. It remains to be clarified whether there is more justification for
referring to the quantities in thermodynamical terms. Of course one wonders what
it’s supposed to mean that any point in spacetime is now associated with a tem-
perature. For the case of a black hole horizon there is an actual particle emission
associated to the temperature. Should we now expect arbitrary screens to also emit
particles?

Well, first a screen that is not a black hole horizon does not have a problem
emitting particles. It is clear where they come from: they come from the next
screen closer to a source and can be traced back to the source which is a sink
of field lines. The problem with a horizon is just that all paths crossing it are
classically forbidden. However, the temperature of any such screen is ridiculously
small and entirely negligible for all practical purposes. Consider a proton with
a mass ofmp ≈ GeV. Assuming it has a has a typical size of≈ 1/mp, it has a
surface temperature ofT ≈ mp(mp/mPl)

2 ≈ 10−25eV. Asking how long it would
take for the proton to noticeably lose a quantum of energy, wecan as usual integrate
dM/dt ≈ R2T 4. One finds that it would take about 10100 times the current age of
the universe for the proton to decay in that fashion. We can safely forget about
that4.

In any case, if observable consequences of the reinterpretation are such remote,
what is it good for? Clearly, the equivalence of two formulations for the gravita-
tional interaction is not the interesting aspect. As long asboth descriptions are
the same claiming “the redshift must be seen as a consequenceof the entropy gra-
dient and not the other way around” [1] is merely words. The interesting aspect
of the reformulation would be to make use of it in regimes where the equivalence

4That this number is so large compared to the black hole temperature is becauseT scales with
the third power of the mass rather than with the inverse of themass as is the case for a black hole
horizon.
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might no longer hold. The thermodynamical description might provide a bridge to
a statistical mechanics description of a possibly underlying theory.

We know that gravity is not easy to quantize, and there are cases we cannot de-
scribe by use of GR. The question is whether in these cases classical gravity might
cease to be meaningful, but the thermodynamic relations continue to hold, thus
making them accessible to us. However, before one starts thinking about quantum
gravity one should maybe try to first reproduce at least quantum mechanics in a
classical background field. The next step could then be asking for the description
of the gravitational force exerted by a superposition state, which is already a case
where a classical description of the particle’s gravitational field fails.

Another remark, mentioned before in [4], is that we do have a fundamental
theory for electrodynamics that is extremely well tested. Since formally the iden-
tification with thermodynamics can also be made for electrostatics it might be illu-
minating to find out whether it continues to hold under quantization. And then it
should be clarified what to do about solutions of the Laplace solutions, i.e. how to
reproduce gravitational waves.

Finally, let’s come back to the claim that according to this reformulation, grav-
ity has a holographic character. Since the thermodynamicalinterpretation is just an
equivalent rewriting there’s no more holography in it then there was in Newtonian
gravity or electrostatics till last year. Arguably one could say though that harmonic
functions do have ‘holographic’ properties, encoded by Gauss’s and Stoke’s inte-
gral identities that we heavily made use of. Rather than speaking of holography, it
might be more appropriate to refer to such a theory that does have bulk degrees of
freedom but allows for a holographic description as ‘holographic friendly,’ mean-
ing it might possibly be extendable to regimes where bulk degrees of freedom are
indeed not available5.
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Appendix

For convenience, here is Gauss’s law
∫

(Σ)
∇2ψdV =

∫

Σ
∇nψdA . (12)

5Lee Smolin, private communication.
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and Green’s 2nd identity
∫

(Σ)

(

ψ∇2φ−φ∇2ψ
)

dV =

∫

Σ
(ψ∇nφ−φ∇nψ)dA . (13)

where, as previously,(Σ) denotes the volume inside a surfaceΣ, and∇n is the
derivative in direction of the surface’s normal vector.ψ andφ are both scalar fields.
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