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Abstract

We derive a general quantum formula giving the mean-square dis-
placement of a diffusing particle as a function of time. Near 0 oK
we find a new universal logarithmic behavior (valid for times longer
than the relaxation time), and deviations from classical behavior
can also be significant at larger values of time and temperature.
Our derivation depends neither on the specific composition of the
“heat-bath” nor on the strength of the coupling between the bath
and the particle. An experimental regime of micro-seconds and
micro-degrees Kelvin would elicit the pure logarithmic diffusion.

The so-called “fluctuation-dissipation” theorem—which relates the thermal

fluctuations of a variable x to the response of that variable to a weak external

force—is usually described as generalizing the Smoluchowski-Einstein relation for

Brownian motion, D = kTµ; but it is not easy to find in the literature any explicit

derivation of this relation as a direct corollary of the theorem. In this paper we

will provide such a derivation under the assumption that the times involved are
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long compared to the relaxation time τ , as defined below. But, because the fluctua-

tion-dissipation theorem is really a quantum-mechanical relationship, it will tell us

something more than just the laws of classical diffusion, which will emerge only in

the limit h̄ → 0, or equivalently in the limit of long times and high temperatures.

In the opposite limit where kT ∆t � h̄, the usual linear dependence ∆x2 ∼ ∆t

will turn out to give way to a new universal behavior ∆x2 ∼ ln ∆t, which probably

should be interpreted as a diffusion driven by quantal zero-point motions rather

than by thermal kinetic energy. The logarithmic behavior will follow from a general

formula (12) for 〈∆x2〉, which will hold for all times long compared to τ , given the

assumption of constant mobility µ. In what follows we will derive this general for-

mula, discuss the limiting cases just alluded to, and show that some deviations from

classical behavior may be observable on the basis of current experimental technique.

In recent years there have been several efforts [1-4] to understand the dynamics

of a quantum particle coupled to a heat bath. Insofar as our work overlaps those

efforts, our results appear to agree. The main difference is that the cited papers

make far-reaching assumptions about the nature of the medium (“heat-bath”) in

which the particle moves, and require the coupling between particle and bath to be

linear (meaning in effect that the coupling is weak). In contrast, we only use that

the response to a weak external perturbation is linear, allowing the coupling of the

particle to the bath/environment itself to be strong, as it will in fact be in most

situations. On the other hand we will predict only the mean-square displacement,

whereas the more special treatments can in principle yield the full density operator

as a function of ∆t.
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The Fluctuation-Dissipation Theorem in the Time-Domain

The fluctuation-dissipation theorem, as usually stated, refers to the fourier

transforms of the auto-correlation and response functions. Let x(t) be some dy-

namical variable (q-number) in the Heisenberg picture, and let f(t) be an infinitely

weak external force applied to x at time t. (We will not need the more general

form of the theorem in which the external coupling is to a different variable y.) The

response function R(t) is defined by the relation

〈x(t)〉f − 〈x〉0 =

∫
R(t− s)f(s)ds, (1)

where 〈·〉f denotes expectation-value in the presence of the force, assuming the

system of which x is a variable to have been in thermal equilibrium with temperature

T at early times; and 〈·〉0 is the same expectation-value for zero force. Also let

C(t) =
1

2
〈x(t)x(0) + x(0)x(t)〉

be the “autocorrelation” or “two-point” function in equilibrium at temperature T .

(Or, if you prefer, you can subtract off 〈x(t)〉〈x(0)〉 = 〈x(0)〉2 from this definition

without invalidating what follows. This would be equivalent to working with x−〈x〉

in place of x.) Then the fluctuation-dissipation theorem [5] stated in the frequency

domain is (with β = 1/kT )

Im R̃(ν) = h̄−1 tanh(πβh̄ν)C̃(ν). (2)

[We are using the following definition of fourier transform F ≡ (̃·):

φ̃(ν) =

∫
dt 1νt φ(t)∗,

where 1x ≡ e2πix.]
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Our first job is to transform this relation to the time-domain. To that end, let

us introduce in place of R(t) (which vanishes for t < 0 by virtue of causality) the

equivalent odd function

Ř(t) = sgn(t)R(|t|).

It is then easy to check that 2i ImF(R) = F(Ř), whence (2) can be written in the

equivalent form:

F(Ř) =
2i

h̄
tanh(πβh̄ν)F(C). (3)

(In fact it is actually this form, rather than (2) that comes out initially in the most

straightforward derivation of the fluctuation-dissipation theorem; it is thus more

appropriate to view (2) as a consequence of (3) than vice versa.) By taking the

fourier transform of (3) we could now express R(t) as a convolution of C(t), but our

main interest here is to do the opposite. Let us therefore solve (3) for C̃, obtaining

C̃(ν) = (−ih̄/2) coth(πβh̄ν)[F(Ř)](ν) + cδ(ν), (4)

where c is a constant and where, for definiteness, the principal part of coth may be

taken. [The ambiguity in 1/ tanh(πβh̄ν) is just a term proportional to δ(ν), which

would drop out of (4) anyway, since it would be multiplying the odd function F(Ř).]

The fourier transform of (4) reads

C =
ih̄

2
F(coth(πβh̄ν)) ∗ Ř+ c, (5)

determining C, up to an additive constant, in terms of the fourier transform

F(cothπβh̄ν) = (i/βh̄) coth(πt/βh̄). (6)

In equation (6), the coth on the right-hand-side is also to be understood as a

principal part, but unlike before, this choice is forced on us, because the addition
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of any δ(t)-piece to cothπt/βh̄ would spoil its oddness, in disagreement with the

oddness of the left-hand-side of (6). Understanding all coth’s to be principal parts,

then, we have finally (in view also of the definition of Ř), the following explicit

formula for C(t) in terms of R(t):

C(t) =
1

2β

∫ ∞
−∞

dt′sgn(t′ − t)R(|t′ − t|) coth(πt′/βh̄) + c. (7)

[The appearance of the undetermined constant c is due to the possibility of redefin-

ing the zero of x without affecting (1). By working with the alternative definition of

C(t) mentioned just before equation (2), we would remove this ambiguity, and cor-

respondingly could set c = 0, given some assumptions on the asymptotic behavior

of x and R.]

The mean-square displacement < ∆x2 >

Now the mean-square displacement of x due to equilibrium fluctuations in time

∆t is < ∆x2 >, where ∆x := x(t+∆t)−x(t). Taking t = 0 for convenience, we have

(since the equilibrium state is time-independent) < ∆x2 > = < (x(∆t)− x(0))2 >

= < x(∆t)2 > + < x(0)2 > − < {x(∆t), x(0)} > = 2C(0)− 2C(∆t), or

1

2
< ∆x2 >= C(0)− C(∆t). (8)

Combining this result with (7) gives us a general equation for 〈∆x2〉 in terms of the

response function R:

1

2
< ∆x2 >=

1

2β

∫ ∞
0

dt′R(t′) [2 coth Ωt′ − coth Ω(t′ + t)− coth Ω(t′ − t)], (9)

where for brevity we have set Ω = π/βh̄. Notice that the undetermined constant c

in (7) has dropped out of this result.
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Quantum Brownian motion

At this stage, let us specialize x to be a cartesian coordinate of an otherwise

free particle immersed in a homogeneous medium with temperature T . For an

idealized inertia-less Brownian particle, the response to a weak external force would

be immediate motion at velocity v = µf , µ being the “mobility”; in other words,

R would be the step function R(t) = µθ(t). However this idealization is plainly too

unrealistic, because it leads to a divergent result in (9). [In this sense we might

say that the fluctuation-dissipation theorem knows that particles have inertia!] A

more reasonable Ansatz for R must incorporate a “relaxation time” or “rise time”

τ representing the time it takes the particle to accommodate itself to any sudden

change in f(t). Such an Ansatz is, for example,

R(t) = µ(1− e−t/τ )θ(t), (10)

which describes the classical motion of a particle subject to viscous friction. Without

making so specific a choice however, we will employ a cruder cutoff which should

be adequate for times much greater than τ :

R(t) = µθ(t− τ). (11)

With thisR, (9) can be integrated exactly (using the distributional identity, PP(coth

x) = d/dx ln sinh |x|) to produce the following fundamental equation of quantum

Brownian motion:

1

2
< ∆x2 >=

µh̄

π
ln

√
sinh Ω|t− τ | sinh Ω|t+ τ |

sinh Ωτ
(∆t� τ), (12)

where again Ω := π/βh̄.

Now strictly speaking, there is the inconsistency in our derivation of (12) that

C(t) is ill-defined for a particle moving in an unbounded space, because 〈x2〉 in
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equilibrium would be infinite, and (8) would therefore assume the indeterminate

form 〈∆x2〉 = ∞−∞. To overcome this problem, one could confine the particle

in a very long “box” (confining potential), it being intuitively clear that this could

alter neither 〈∆x2〉 nor R(t) in the limit of an infinitely large such box.

Three limiting cases of the general formula (12)

The possible limiting cases of (12) are determined by the relative magnitudes

of the three times τ , βh̄ and ∆t, which we may call respectively the relaxation time,

the “quantum time”, and the “diffusion time”. A priori, there would be essentially

3!=6 distinct cases, but since we must have ∆t� τ in order to apply (12), we will

limit ourselves to only three of them. [It is nonetheless instructive to notice that

(12) becomes self-contradictory for ∆t near τ since it then equates an intrinsically

positive expression to a negative right-hand-side. This implies that (11) could not

be the exact response function for any system, even in principle. More generally,

one can derive from (7) and the definition of C(t), a positivity criterion which any

putative response function must fulfill in order to be physically viable. We do not

know how restrictive this criterion is in practice, but we have checked that the R of

(10) yields a mean-square displacement which is non-negative for all times, as one

might have expected.]

Case 1 βh̄� τ � ∆t

This is the classical limit, and (12) reduces to the classical relation

1

2
< ∆x2 >= (µ/β)∆t = µkT∆t, (13)

or µkT (∆t− τ) if the leading correction is retained.

Case 2 τ � ∆t� βh̄
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This is the extreme quantum limit, in which (time)(energy)� h̄ for the time-

scale set by the diffusion time ∆t and the energy-scale set by the thermal energy

kT . In this limit (12) reduces to

1

2
< ∆x2 >=

µh̄

π
ln

∆t

τ
, (14)

or

µh̄

π
ln

√
(
∆t

τ
)2 − 1

if somewhat more precision is desired. It is noteworthy that the temperature has

disappeared entirely from this expression (except insofar as it influences µ and τ),

suggesting a quantum Brownian motion due entirely to “zero-point” fluctuations,

which are present even at absolute zero. Indeed, the striking logarithmic dependence

in (14) could also have been derived by first taking the zero-temperature limit of

the fluctuation-dissipation theorem itself, and only then applying it to the R of a

diffusing particle.

Case 3 τ � βh̄� ∆t

Intermediate between cases 1 and 2, this situation might be described as one

in which the relaxation occurs on quantum time-scales, although the diffusion-time

itself is already classically long. [A suggestive way to rewrite the inequality τ �

βh̄ is as the relation between diffusion constants, Dclassical � Dquantum, where

Dclassical = µ/β, and Dquantum = h̄/m, with m taken from the “viscous damping”

relation τ = µm envisaged in (10).] In this case (12) reduces to

< ∆x2 >

2
=
µ∆t

β
+
µh̄

π
ln

βh̄

2πτ
, (15)

which one can interpret as the result of a two-stage spreading which follows the

quantum law (14) up to the time tQ := βh̄/2π, and thereafter continues according
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to the classical law (13), with the second term in (15) remaining forever as a kind

of residue of the quantum era. In order for this residue to be significant, we need

µ∆t/β <∼ (µh̄/π) ln(βh̄/2πτ), or

∆t <∼
βh̄

π
ln
βh̄/π

2τ
,

which can occur non-trivially (i.e. without reducing to case 2) only if βh̄/τ is

exponentially big, so that ln(βh̄/τ)>∼∆t/βh̄ � 1. Taking m = τ/µ as earlier, this

amounts to a requirement that the particle be extremely light:

m <∼ (βh̄/µ)e−
π∆t
βh̄ . (16)

Remarks and numerical estimates

Equations (13), (14) and (15) are all special cases of the more general relation

(12), which should be valid whenever τ � ∆t. In other situations, or for more

general response-functions R(t), one must refer back to (9) itself, from which the

spreading can always be computed as long as R(t) is known. A particularly inter-

esting response function to treat would be (10), and another interesting case might

be a particle moving in a superfluid.

In the zero-temperature limit, i.e. in case 2 above, our formula (14) may be

compared with a result of Ambegaokar [4], who used a path-integral formalism,

and assumed a linear coupling between the particle and an environment comprising

an infinite collection of harmonic oscillators. He obtained an expression for the

mean-square displacement of a Brownian particle in the quantum regime which

corresponds to our result given in (14), if we make certain identifications. According

to Ambegaokar (with a presumed misprint corrected),

< (∆x2) >= ((h/π2)/γm) ln|(t√ωcγ)| + const., (17)
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for (1/γ) < t < (βh̄). Here, 〈∆x2〉 is given by a density operator ρ which reduces

to a delta-function at t = 0, and ωc defines an upper frequency cutoff beyond which

the linear relationship between particle velocity and environmental friction breaks

down. Also, judging from equation (5.3) of [4], it appears natural to identify 1/γ

with our τ , and therefore 1/mγ with our µ. If we do so, and also equate ωc to τ−1,

then we recover (14) from (17) with the constant set to zero.

In connection with (14) one can ask the following question: classically, what

kind of response function would lead to a logarithmic law of diffusion? If we take the

h̄→ 0 limit of (9), we find that the relevant response function should be proportional

to 1/t , which is physically impossible. This implies that the effect described by

(14) is of purely quantum mechanical origin.

Finally, let us estimate the thresholds of time and temperature at which sig-

nificant deviations from classical behavior should appear. In order to be in the

“pure quantum regime”, we need ∆t� βh̄, which can also be written in the time-

energy form, kT∆t � h̄. Taking T ∼ 10−6 deg (cf. [6]) and ∆t ∼ 10−6sec yields

kT∆t/h̄ ∼ 0.1, which ought to be well within the “pure quantum regime”, meaning

that (14) should apply if the relaxation time is short enough (and the “reservoir”

in thermal equilibrium). For higher temperatures or longer times, deviations of the

sort described by (15) might be observable if τ is small enough and a condition like

(16) is satisfied.
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