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Abstra
tContrary to what is often stated, a fundamental spa
etime dis
reteness neednot 
ontradi
t Lorentz invarian
e. A 
ausal set's dis
reteness is in fa
t lo
allyLorentz invariant, and we re
all the reasons why. For illustration, we introdu
ea phenomenologi
al model of massive parti
les propagating in a Minkowskispa
etime whi
h arises from an underlying 
ausal set. The parti
les undergoa Lorentz invariant di�usion in phase spa
e, and we spe
ulate on whether this
ould have any bearing on the origin of high energy 
osmi
 rays.

In dis
rete approa
hes to quantum gravity, the fundamental des
ription of spa
e-time is not taken to be a manifold, but some dis
rete stru
ture to whi
h the manifoldis only an approximation. The s
ale of this dis
reteness is usually assumed to bePlan
kian. It is often asserted any su
h theory must violate lo
al Lorentz invarian
e(LLI) and a new area of resear
h { LLI violating phenomenologi
al e�e
ts of quantumgravity { has grown up around this idea. The purpose of this letter is to emphasizethat 
ausal set theory [1℄ respe
ts LLI and to open a new phenomenologi
al windowon this approa
h to quantum gravity.What does it mean to say that a dis
rete theory respe
ts Lorentz invarian
e? Itis diÆ
ult to give a pre
ise answer, but intuitively the import is 
lear. Whenever a
ontinuum is a good approximation to the underlying stru
ture (and assuming spe
if-i
ally that the approximating 
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dis
reteness must not, in and of itself, suÆ
e to distinguish a lo
al Lorentz frame atany point of M . In 
onsequen
e, no phenomenologi
al theory inM derived from su
ha s
heme 
an involve a lo
al (or global) Lorentz frame either.1Of 
ourse the above presupposes an answer to the question: \How is the approx-imating 
ontinuum related to the dis
rete entity that underlies it?". Whether ornot a parti
ular dis
rete theory respe
ts LLI 
annot be settled until this question isanswered in the 
ontext of that theory. Lu
kily, in 
ausal set theory, there is a 
learproposal for an answer, and we will show that LLI is indeed respe
ted.A 
ausal set (
auset for short) is a lo
ally �nite, partially ordered set (for reviewsand motivation for 
ausal set theory see [2℄ [3℄). This is a set, C, endowed witha binary relation � su
h that elements of the set satisfy the 
onditions (i) (x �y) and (y � z) =) (x � z) (transitivity), (ii) x 6� x (a
y
li
ity), and (iii) allintervals fx : y � x � zg are �nite. The relation � gives rise, in the 
ontinuum limit,to the 
ausal order on spa
etime points, and the number of elements in a sub
ausetyields the volume of the 
orresponding region of the 
ontinuum in Plan
k units.In the 
ontinuum 
ontext, the 
ausal order and volume information suÆ
e tospe
ify a (
ausally reasonable) Lorentzian manifold [4, 5℄. It is therefore reasonableto regard a Lorentzian manifold as an approximation to a 
auset if that 
auset isa dis
rete \sampling" of the 
ontinuum 
ausal order with uniform density.2 Morespe
i�
ally, we may say that a Lorentzian manifold M approximates a 
auset C(M � C) if C 
ould have arisen, with relatively high probability, via a randompro
ess of \sprinkling into M", at Plan
k density,3 with the 
auset relations indu
edby the spa
etime 
ausal stru
ture.4A \sprinkling" is more properly des
ribed as a Poisson pro
ess. To see what thismeans, imagine dividing M , using any lo
al 
oordinate systems, into small boxes ofvolume V , and then pla
ing a \sprinkled point" independently into ea
h box withprobability V=Vfund, where Vfund is the fundamental volume (of order the Plan
kvolume). The Poisson pro
ess is the limit of this pro
edure as V tends to zero.Be
ause spa
etime volume is an invariant, the limiting pro
ess is independent of the
oordinate systems used to de�ne the boxes. It follows that one 
annot tell whi
hframe was used to produ
e the sprinkling: the approximation is \equally good in all1Naturally, there 
an be no question of a literal a
tion of the entire Lorentz group on an individualdis
rete stru
ture. Rather su
h a stru
ture 
an only be Lorentz invariant in the same sense that a
uid is translation invariant. This should not detra
t from the fa
t that a 
uid is indeed translationinvariant in an important sense, whereas a 
rystalline solid is not.2More generally, one would only require that some 
oarse-graining of the 
auset approximateMin this sense; but we ignore this distin
tion here. For a somewhat di�erent approa
h to de�ning arelation of 
loseness between a manifold and a 
auset see [6℄.3By \Plan
k density", we really mean \density unity in fundamental units". One expe
ts funda-mental units to be equal in order of magnitude to Plan
k units.4Taking the order relation of the 
auset to be indu
ed stri
tly from that of the spa
etime is onlythe simplest possibility. Other rules 
ould be 
onsidered, but they would not a�e
t anything in thispaper.
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frames."
(a) (b)Figure 1: A regular latti
e of spa
etime points in two di�erent Lorentz frames. Normal
onventions for spa
etime axes are used. While in (a) the latti
e appears to have a regulardensity of elements, in the boosted frame shown in (b) the density of points is revealed notto be uniform.Why is the randomness 
ru
ial? Let us take the example of 1+1 dimensionalMinkowski spa
e. One obvious way to try to dis
retize it is to 
hoose a frame anduse a \diamond latti
e" with respe
t to that frame, i.e. the points with 
oordinates(t; x) = (�(r + s); �(r � s)), where r and s are integers and � is some �xed length,as in �gure (1a). In this frame the latti
e appears to be a good approximation; all\ni
ely shaped" large regions have a similar density of elements. In a frame boostedat velo
ity V in the positive dire
tion, however, the elements are at (
�[(1 � V )r +(1 + V )s℄; 
�[(1 � V )r � (1 + V )s℄). Figure (1b) shows this latti
e with 
 = 1:25.Now it be
omes 
lear that, if the boost is large enough, there will be \ni
e" bigregions 
ontaining no elements at all, and others 
ontaining far too many elements.The approximation only looks good in the original frame, and so it breaks Lorentzinvarian
e by preferring this frame. In light of this example, it seems likely that thesame problem would a�e
t any non-random dis
retization of a spa
etime. Thus, forexample, a Regge-type triangulation whose simpli
es look \fat" in one frame will look\long and skinny" in a relatively highly boosted frame.We want to emphasise that not only is the pro
ess of sprinkling Lorentz invariantbut so also are almost all of the individual 
ausets that are generated. An obje
tionthat often 
omes up in this 
onne
tion 
on
erns the ne
essary o

urren
e of voidsin any given Poisson sprinkling. While it is true that voids must o

ur, this doesnot 
ause a problem for Lorentz invarian
e (or any other problem that we know of).However, one may still feel uneasy about the voids, and some people seem to believethat they ne
essarily would break Lorentz invarian
e in some manner. To put su
hqualms in perspe
tive, let us estimate the probability that there is at least one voidof nu
lear dimensions in the history of the observable universe sin
e the Big Bang.More pre
isely, we will bound the probability that a sprinkling would leave emptyany interval whose height is of the order of one Fermi. (An interval in spa
etime is a\double light 
one" or \Alexandrov neighborhood". We do not require the \axis" ofthe interval to be aligned with the 
osmi
 rest frame. Hen
e our bound will apply tothe probability of \�nding a void in any frame".)All the numbers in what follows are \of the order of". Consider as a model of theuniverse a portion P of Minkowski spa
etime, the size of the observable universe and3



de�ned by 0 � t � T , 0 � xi � T , i = 1; 2; 3 in some frame. If T is 13 billion years,the spa
etime volume is 10240 in fundamental units. An interval of nu
lear size hasspa
etime volume 1080. This means that the probability that any parti
ular nu
learsized interval will be a void is e�1080 . But we want the probability q that at leastone interval (any one) in P will be void. This 
an't be 
al
ulated easily, be
ausethe intervals overlap and the probabilities for them to be void are not independent.However, we 
an put an upper bound on q without mu
h diÆ
ulty.Let us �ll P with 
oordinate balls (with respe
t to the \de�ning frame" of P )of small enough radius that any \upright" interval of nu
lear size is guaranteed to
ontain at least one 
omplete ball. (Upright means that the top and bottom pointshave the same spatial 
oordinates.) A radius of one hundredth nu
lear size will do,and we will have 10168 of these balls pa
ked into P . The probability that at least oneof them is void is 10168e�1072 . These same balls will also suÆ
e for intervals of nu
learvolume that are slightly boosted or \tilted" from the upright. They will 
ertainly dofor all 
 fa
tors less than or equal to 
 = 5=4, that is for a region of the Lorentz groupwith volume of order 1. For ea
h su
h 
ell of the Lorentz group we 
hoose a set of
oordinate balls in spa
etime (in the 
orresponding frame). The relevant region of theLorentz group is bounded by the maximum relevant boost in P , whi
h 
orrespondsto a 
 fa
tor of 1042. (Any larger boost would produ
e a ball that 
ould not �t intoP . In fa
t the maximum 
 is a
tually smaller, sin
e the boosted nu
leus would meetthe boundary of P before the smaller ball would.) The number of 
ells needed to
over this region of the Lorentz group is 1084. The probability of getting any nu
learsized void is less than the probability that any one of the 
oordinate balls from any ofthe boosted sets will be void. This in turn is less than 1084� 10168�e�1072 , a numberso tiny that the two prefa
tors have no impa
t whatsoever on its value.Given that 
ausal sets respe
t Lorentz invarian
e, what 
on
lusions 
an be drawn?Most obviously, we predi
t that no violation of LLI will be observed at the phe-nomenologi
al level, so that, if any of the experiments 
urrently planned or underway did �nd su
h a violation, the 
ausal set hypothesis would be disfavored. But thisis only a negative predi
tion. Are there also positive signatures? Sin
e the 
ausal sethypothesis makes su
h a de�nite statement about the underlying stru
ture for spa
e-time and how it is related to the 
ontinuum we a
tually experien
e, it is not diÆ
ultto devise 
on
rete models predi
ting potentially observable e�e
ts of the underlyingdis
reteness. We give one su
h model below whi
h we 
all \swerving", after Lu
retius[7℄: \The atoms must a little swerve at times { but only the least, lest we should seemto feign motions oblique, and fa
t refute us there."In the 
ontinuum, massive parti
les travel on timelike geodesi
s. However, anunderlying dis
reteness might indu
e small 
u
tuations in the parti
le's worldline,and the 
ausal set pi
ture naturally suggests models in whi
h this e�e
t would beLorentz invariant. Though it might be too small to observe on everyday s
ales, su
han e�e
t might be dete
table in sensitive laboratory experiments, or by astronomi
al4



observations if the parti
le were travelling over 
osmi
 distan
es. Here is a model ofthis type.Consider a hypotheti
al point-parti
le of mass m moving through a 
auset Cderived by sprinkling Minkowski spa
e M 4. We will take its traje
tory to be a 
hainof elements of C (i.e. a totally ordered subset of C). No su
h 
hain 
an 
orrespondperfe
tly to a straight line in M 4. So, given an \initial segment" of the traje
toryup to some element en of C, how 
ould its future 
ontinuation be determined? If weassume that the traje
tory's past determines its future, but that only a 
ertain propertime �f into the past of the traje
tory is relevant, then we are led to the followingLorentz invariant rule as a parti
ularly simple dis
rete analog of geodesi
 motion.
e
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Figure 2: A portion of 1+1 Minkowski spa
e where the dots represent elements of a 
ausetsprinkled into it. The traje
tory of the parti
le has rea
hed en with momentum pn (theframe having been 
hosen so that the three-momentum is zero). The dotted line is thehyperbola of points a proper time �f to the future of en. The element within proper time�f of en that best preserves the momentum is en+1. The ratio of ��2f to the density ofsprinkling has been exaggerated here to emphasize the momentum 
hange in one step. Ina more realisti
 model �f would be larger.The future traje
tory is 
onstru
ted indu
tively, as illustrated in �g. 2. Startingfrom an element en and a momentum pn, the next element in the traje
tory, en+1,must be 
hosen. For 
onvenien
e we have drawn the diagram in the rest frame at en.The new momentum pn+1 is de�ned to be proportional to the ve
tor between en anden+1. The sele
tion of en+1 is made su
h that en+1 is in the 
ausal future of en and iswithin proper time �f of en and so that jpn+1 � pnj is minimized. In the �gure, thismeans that en+1 is within the future light 
one of en, below the dotted hyperbola, andsu
h that the ve
tor from en to en+1 is as 
lose to the verti
al as possible. (That thereexists su
h an element in that region is guaranteed by the in�nite spa
etime volume ofthe region, the Poisson distribution and the lo
al �niteness 
ondition.) This realizes5



the ideas that the traje
tory should be as 
lose to a straight line as possible and thatthe dynami
s should be approximately Markovian if the \forgetting time" �f is small.(There is ample room for it to be small and yet mu
h bigger than the dis
retenesss
ale if the latter is Plan
kian.) The pro
ess is then repeated starting with en+1 andpn+1.Our model implies random 
u
tuations in the momentum of the parti
le. Forany numbers Æ1 > Æ2 > 0 at stage n there is a �nite volume within proper time �fto the future of en su
h that, if element en+1 were in this volume, the momentum
hange jpn+1 � pnj would lie between Æ1 and Æ2. The probability of this happening isthe probability that this volume is not empty of sprinkled points, while the volumeleading to a smaller momentum 
hange is empty. Both these probabilities are givenpre
isely by the Poisson distribution: the probability that a volume U is empty ise�%U , where % is the density of the sprinkling.This simple model 
an be 
riti
ised on many grounds: it treats the parti
le as ifit were of zero size, it is deterministi
 rather than quantum, et
.. Most seriously, it
ould not possibly be fundamental, sin
e the law of motion of the traje
tory is notformulated in terms of the 
auset, but refers also to the approximating Minkowskispa
etime.5 We present it in the spirit of [8℄: form a 
on
rete model with testable
onsequen
es based on important aspe
ts of the fundamental formalism and 
ompareto observation.Sin
e the hypothesized Lu
retius e�e
t is supposed to o

ur on very small s
ales,it should be possible to approximate it over ma
ros
opi
 distan
es by a di�usionequation (hydrodynami
 limit). This is analogous to how the ordinary di�usionequation des
ribes the long time behaviour of a random walk. In our 
ase however,the di�usion is not in physi
al spa
e R3, but on the phase spa
e H 3 � M 4, where H 3is the mass shell (Loba
hevskii spa
e), M 4 is Minkowski spa
etime, and the di�usiontakes pla
e in proper time � . The di�usion in spa
etime is se
ondary and is drivenby that in momentum spa
e, in 
lose analogy with the Ornstein-Uhlenbe
k pro
ess.Consider the s
alar (not s
alar density) probability distribution � � �(p� ; x�; �)on H 3�M 4. It is a fun
tion of momentum, p�, spa
etime position, x�, and proper time� . We write the full four-momentum as an argument with the understanding thaton the mass shell there are only three independent 
omponents. With the 
onditionthat the pro
ess be Lorentz invariant, the following equation for � 
an be derivedby following the pres
ription set out in [9℄ for sto
hasti
 evolution on a manifold ofstates: ���� = kr2p�� 1m
2 p� ��x� � (1)where r2p is the Lapla
ian on H 3, m is the mass of the parti
le, and k is a 
onstant(that will depend on the parameters of the dis
rete pro
ess, su
h as the forgettingtime �f ).5This defe
t 
an be over
ome fairly easily, however.
6



This equation de�nes a di�usion pro
ess in whi
h the parti
le's proper time �serves as time. It is the unique Markovian, Poin
ar�e invariant, relativisti
ally 
ausal,di�usion law in va
uum that preserves � � 0.6 For �xed mass, it has a single freeparameter, the di�usion 
onstant k. (In prin
iple, the 
oeÆ
ient of the p� ��x�� term
ould be di�erent, but that would mean that p� would not be the physi
al mo-mentum.) Given these uniqueness properties, the equation should be insensitive tovariations in the mi
ros
opi
 model that underlies it, so long as the latter is Lorentzinvariant, 
ausal and (approximately) Markovian. So although the above dis
reteswerve model might be wrong in detail, the ma
ros
opi
 phenomenology of (1) tran-s
ends it.If � is a fun
tion of momentum alone and is initially (at � = 0) a delta fun
tionin momentum, then the (un-normalized) solution { adapted from the solution of thedi�usion equation on S3 [11℄ { is�(p) = e�R2=4k̂� (k̂�)� 32 e�k̂� RsinhR (2)where k̂ = k=m2
2, R = sinh�1(p=m
), and p � jpj is the norm of the three-momentum in the frame de�ned by the point in H 3 at whi
h the di�usion begins.� = m
R is then the geodesi
 distan
e from that point.Equation (1) and its fundamental solution (2), expressed as they are in termsof proper time, are not well suited to 
omparison with experiment/observation, eventhough they exhibit the underlying Lorentz invarian
e very 
learly. Instead, one needsa des
ription of the same pro
ess with respe
t to 
osmi
 or laboratory time. To thisend, �x a preferred set of spa
elike hypersurfa
es t � x0 = 
onstant, and assume thatthe distribution on some initial hypersurfa
e of the set is uniform in spa
e (i.e. �does not depend on xi, where i are spatial 
oordinates). The swerves, being spatiallyhomogeneous and isotropi
, will preserve this uniformity, and so if we assume thatany additional fri
tional e�e
ts are also homogeneous and isotropi
, the distributionwill remain uniform. We require, under these 
onditions, an equation governing howthe probability distribution evolves in 
osmi
 time t.Su
h an equation 
an be dedu
ed from (1). (Details of the derivation and of theinhomogeneous 
ase will appear elsewhere.) The result is:���t = kr2p �p1 + p2=m2!�ra(wa�) (3)Here, the s
alar fun
tion � � �(p�; t) on H 3, gives the momentum distribution, ra isthe 
ovariant derivative on H 3, and p is the norm of the parti
le's three-momentum,p in the 
osmi
 frame. (To make this equation plausible, noti
e that the fa
tor6The Ornstein-Uhlenbe
k pro
ess for a parti
le di�using in intera
tion with a relativisti
 
uidhas been 
onsidered in [10℄. In that 
ase the rest frame of the 
uid provides a preferred frame forthe sto
hasti
 noise term driving the di�usion. The present pro
ess has no preferred frame and isfundamentally Lorentz invariant. 7



p1 + p2=m2 is the boost fa
tor 
 = dt=d� .) The term involving the ve
tor wa isa fri
tion term added to represent the e�e
t on the parti
le's momentum of, forexample, the Hubble expansion and intera
tions with the CMBR (
osmi
 mi
rowaveba
kground radiation). The spe
i�
 form of w, whi
h will in general be a fun
tion ofthe momentum, will depend on the type of fri
tion involved.7 For the 
ases mentioned,wa will have only a radial 
omponent (in the p � jpj dire
tion).In the time-dependent 
ase, (3) will probably have to be solved numeri
ally. How-ever, we 
an hope to analyze its equilibrium solutions analyti
ally. For example, atlarge p, energy E � p, and if wp � �bEn with n � 1, then the equilibrium solu-tion will behave as Ee�bEn=n. If the dominant fri
tion over any high-energy range is
onstant, i.e. if wp � dE=dt � 
onstant, then the equilibrium distribution will be apower law in that range.How might one observe di�usion of the above sort? Cosmologi
al and astro-physi
al observations are the obvious pla
es to look for 
onsequen
es of a universala

eleration me
hanism. But �rst, laboratory physi
s 
an put an upper bound on thedi�usion 
onstant k. Suppose the parti
les in question are protons. If k were largeenough, hydrogen gas would spontaneously heat up in a short time, and this has notbeen observed. In the laboratory regime, hydrogen is non-relativisti
, so equation (3)
an be approximated as ���t = kr2� (4)wherer2 is now the standard Lapla
ian on R3. This is the standard di�usion equationand has the well known solution:� = A(t) exp(� p24kt) (5)where A(t) is a normalization fa
tor. Usefully, this is also the form of the Maxwelldistribution for a 
lassi
al gas in thermal equilibrium:�Maxwell = A exp(� p22mkBT ) (6)wherem is the mole
ular mass, T is the temperature, and kB is Boltzmann's 
onstant.If a gas starts in a thermal state, it will therefore remain in a thermal state even ifswerves are in
luded. Moreover, the above two equations imply that the temperaturewill s
ale linearly with time, spe
i�
ally:dTdt = 2kmkB (7)Assuming, for the sake of argument, that a heating rate of a millionth of a degree perse
ond would already have been dete
ted in the laboratory, we obtain the approximatebound k � 10�56kg2m2s�3 (8)7In the 
ase of violent momentum transfers, this would have to be generalized to a Boltzmanntype 
ollision term. 8



The maximum average energy gain due to swerves 
onsistent with this rate of tem-perature gain 
an be obtained from the formula hEi = 3kBT=2:h�Ei=�t � 4:3� 10�11eVs�1 (9)Now, let us turn to some possible astrophysi
al e�e
ts of swerves. One outstandingastronomi
al puzzle is the origin of high energy 
osmi
 rays (see [12℄ for a re
entreview). Attention is often fo
used on the so-
alled \trans-GKZ" events, apparentdete
tions of 
osmi
 rays with energies above 5 � 1019 eV. Su
h primaries, if theyare protons, 
annot have 
ome from farther than about 20 Mp
 (be
ause they wouldhave de
ayed due to photo-pion produ
tion with the CMB photons), but they haveno obvious sour
e in that distan
e range. But even for 
osmi
 rays between 1015eV and 1019 eV, there are only suggestions and no universally a

epted a

elerationme
hanism for produ
ing the observed energy distribution. The data (see e.g. �g 1 of[12℄) seem to 
ry out for a universal 
osmi
 a

eleration me
hanism that would inje
tprotons, say, into the galaxy with a power law distribution of E�a, where 2 < a < 3,so that the observed variations in the power law and deviations from isotropy wouldbe due to the dynami
s of the protons in the galaxy. Could swerves provide su
h a
osmi
 me
hanism?8Swerves indu
e a \statisti
al a

eleration" analogous to Fermi a

eleration, andit is possible a priori that enough intergala
ti
 hydrogen 
ould be a

elerated up tovery high energies to explain the data. Unfortunately this degree of a

eleration isin
onsistent with the bound on k already dis
ussed. A \Lu
retian" explanation ofthe 
osmi
 ray data, assuming the primaries are protons, would require some protonsto a

elerate to � 1020 eV from far lower energies on a times
ale of the age of theuniverse. To produ
e a power law distribution in energy, a signi�
ant proportion ofthose protons rea
hing, say, 1018 eV would have to go on to double their energy andmore. The rest frame of a proton with an energy of 1018 eV has a 
 fa
tor of 109relative to the 
osmi
 frame, so 10 billion years of 
osmi
 time is only 10 years ofproper time for su
h a proton. Doubling its energy in the 
osmi
 frame would meangaining around 250 MeV in its own frame. But from the inequality (9), in this framethe average energy gain in 10 years 
ould be at most 1:4�10�2 eV. (At these energies,we 
an trust the non-relativisti
 approximation.) Sin
e the distribution of momentumis Gaussian, with su
h a low average energy gain, the probability of gaining 250 MeVis exponentially small. In other words, a proton has pra
ti
ally no 
han
e of makingit from 1018 eV to 2� 1018 eV in the age of the universe as a result of swerves. This
al
ulation assumes that k is roughly the same for an intergala
ti
 hydrogen atom asit is for a proton, as it is for a H2 mole
ule in a box of gas, but the argument is stillvalid even for a k many orders of magnitude larger than has been assumed.Proton swerves 
annot explain trans-GKZ 
osmi
 rays either (if indeed their ap-parent observation turns out to be 
orre
t). Swerves would a

elerate some protons8The idea that the rays might be the result of spontaneous a

eleration, as a result of non-standard QFT, has been dis
ussed in [13℄. 9



ba
k up beyond 1020 eV after they entered the \GKZ sphere", � 20 Mp
 from us; butthis e�e
t would not be signi�
ant. The argument for this is similar to that above.A proton with an energy of 1019 eV would rea
h us from the GKZ sphere in about 2hours of proper time. This would not leave enough time for a non-negligible fra
tionof protons to, say, double their energy.So the most dire
t appli
ation of the swerve idea to protons 
annot explain theorigin of high energy 
osmi
 rays. However, more 
ompli
ated s
enarios 
an be
onsidered. For example, in [14℄ the authors postulate homogeneously distributedsour
es produ
ing (by some unknown me
hanism) neutrinos with energies above 1022eV whi
h 
ollide with a 
osmologi
al ba
kground of neutrinos (hot dark matter) toprodu
e { amongst other things { protons and gamma rays that 
ould be 
osmi
ray primaries. Perhaps swerves 
ould provide the required a

eleration in this 
ase.Indeed neutrinos are more likely 
andidates than protons to be a�e
ted by the un-derlying dis
reteness as they are more point-like than protons, a

ording to presentbeliefs. Moreover, we have few if any laboratory bounds on k to 
ontend with in the
ase of neutrinos.More sophisti
ated models 
ould also be developed. Our simple proton modelassumes that the \di�usion 
onstant" k does not depend on lo
al fa
tors like averageparti
le density, temperature et
. In a more realisti
 swerve model, perhaps a highparti
le density would lower the rate of di�usion, in whi
h 
ase the 
onstraints fromlaboratory physi
s 
ould be loosened. A se
ond sort of generalization of the di�usion(or Fokker-Plan
k) equation (3) would relax the assumption of lo
ality in momentumspa
e. The \fri
tion term" (3) 
aptures the e�e
t of many small momentum transfersdue to (for example) CMBR s
attering. The e�e
t of large ki
ks would have to bedes
ribed by a Boltzmann equation. A third improvement to our model would be totreat the parti
les quantum me
hani
ally rather than 
lassi
ally, allowing one to takeinto a

ount the �nite size of the \wave pa
ket". Su
h a 
hange might be important,be
ause it is 
on
eivable that matter-indu
ed de
oheren
e would in
uen
e the valueof k, making it di�erent on earth than in interstellar spa
e. Unfortunately, however,the type of over-ar
hing framework that is available for 
lassi
al di�usion seems tobe la
king in the quantum 
ase, so it is less obvious how to pro
eed. Finally, in a fulltheory of 
ausal set quantum gravity, regions of 
ontinuum spa
etime might be bestdes
ribed as a quantum superposition of many 
ausets, and a better phenomenologi
almodel might have to re
e
t this aspe
t as well.Let us return for a moment to possible observational eviden
e for swerves. Sin
ethe path of a parti
le would no longer be an exa
t geodesi
, a 
ertain amount offuzzing of distant sour
es of parti
les would o

ur. Perhaps this 
ould be revealed byhighly dire
tional dete
tors of some sort.So far we have limited our dis
ussion to the 
ase of massive parti
les. A Lorentzinvariant di�usion equation for massless parti
les 
an also be written down, althoughin this 
ase we la
k a 
on
rete model of propagation on the underlying 
auset that
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ould serve as motivation. 9 Rather than di�usion in H 3, we have in this 
ase di�usionon a \light" 
one, sin
e the 4-momentum of a massless parti
le is a null ve
tor. We willdes
ribe this further in a future work. Lorentz invariant di�usion on the 
one 
annotalter the dire
tion of the momentum, but it will 
ause its magnitude to 
u
tuate, sothat a distribution peaked at a 
ertain energy would spread with time. A

ordingly,one might seek eviden
e for this kind of di�usion in the blurring of sharply peakedspe
tral features of distant sour
es (su
h as emission and absorption lines). This isin 
ontrast to what has been proposed in Lorentz-violating models, where the speedof a photon is presumed to vary with its energy (see e.g. [15℄).Finally, just as tests of Lorentz invarian
e push spe
ial relativity to its limits,tests of unitarity would allow one to push the state-ve
tor formalism of quantumme
hani
s to its limits. It seems only reasonable therefore that simple models of thepossible e�e
ts of non-unitarity be formulated. A non-relativisti
 example is given in[16℄. Perhaps a relativisti
 version of this 
ould produ
e a similar e�e
t to swerves.To summarize, there is no reason that the assumption of an underlying spa
etimedis
reteness must give rise to violations of lo
al Lorentz invarian
e, be
ause the 
ausalset hypothesis does not. To illustrate the point that dis
reteness 
an neverthelesshave observable e�e
ts, we have exhibited a Lorentz invariant momentum di�usionmotivated by 
ausal sets. If it is indeed the 
ase that 
ertain proposals for quantumgravity, su
h as loop quantum gravity and spin foams do predi
t violations of LLI,then we are in the happy situation of having a way to distinguish between di�erentproposals experimentally. Be that as it may, the spe
i�
ity of the models treated inthis paper indi
ates that the 
ausal set approa
h holds great potential for providingphenomenologi
al theories of matter propagating in a dis
rete ba
kground. In an eraof ever in
reasing sensitivity and power in 
osmologi
al observations, this potentialto predi
t and dete
t the e�e
ts of a fundamental spa
etime dis
reteness should beexploited.Note added: The Poin
ar�e-invariant di�usion pro
ess des
ribed above is 
on-stru
ted rigorously in [17℄ and [18℄.We are grateful to Pasquale Blasi, David Craig, Stuart Dowker, Seth Major, LauraMersini, Angela Olinto and David Rideout for dis
ussing these ideas with us.This resear
h was partly supported by NSF grant PHY-0098488 at SU, by AirFor
e grant AFOSR at UCSD, by the OÆ
e of Resear
h and Computing of Syra
useUniversity and by the Department of Physi
s at Queen Mary, University of London.9We also la
k an idea of how to des
ribe su
h a di�usion in wave language as opposed to parti
lelanguage. What would it mean in the 
ase of Maxwell's equations for example?
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