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Abstract

The elements of a finite partial order P can be identified with the maximal
indecomposable two-sided ideals of its incidence algebra 2, and then for
two such ideals, I < J <= IJ # 0. This offers one way to recover a
poset from its incidence algebra. In the course of proving the above, we
classify all of the two-sided ideals of 2.

In contemporary physical theory, the concept of a “space” or, more formally, of a set with
structure, plays a central role. Most notably, spacetime itself is conceived of in this manner
— as a differentiable manifold. However, one can observe a certain tension between two ways
of conceptualizing such structures and working with them. Tangent vectors, for example,
can be thought of either as infinitesimal displacements or as sets of numbers obeying a
linear transformation law. In present day language, the two opposed tendencies of thought
can to some extent be characterized by the words “geometrical” and “algebraic”, although
neither term is really suitable. Perhaps, “intrinsic” vs “coordinate based” comes closer;
and sometimes the words “synthetic” and “analytic” have been used to convey the same

opposition (as in synthetic versus analytic geornetry).T

Consider, for example, Minkowski spacetime M™. From the “intrinsic” side it can

be understood, on one hand, as a topological space of dimension four supporting such

* Published in Modern Physics Letters A 18: 2491-2500 (2003), a special issue devoted
to the proceedings of “Balfest”, held May, 2003, in Vietri sul Mare, Italy. Archived at
math.C0/0309126

" In the philosophical world, these two attitudes manifest themselves to some degree as
“materialism” and “instrumentalism” although the correspondence is obviously very im-
perfect (cf. the oft stated idea that an instrument reading is always a number.)



concepts as straight line (inertial motion), light cone, and parallelogram. Or by focusing
on its causal relationships rather than its metric and topological ones, one can understand
M* as a certain partially ordered set (poset), a second “intrinsic” characterization that is
nevertheless very different from the first. In contrast to both these characterizations, M*
would be described from the “coordinate based” side by four real variables t, z,y, z which
geometrically have the meaning of numerical functions on spacetime. Here, the algebraic
relationships among the four variables take center stage, while the actual elements of the

space (the points) withdraw into the background.

Of course the “intrinsic” and “coordinate based” descriptions of M* are mathemati-
cally equivalent. The most highly developed and general instance of this sort of equivalence
is the Gel’fand isomorphism, which implies in particular that any manifold can be recov-
ered, as a topological space, from the C*-algebra of scalar functions that it supports (in
effect its coordinate functions). However, a manifold per se is not yet a spacetime because
it lacks metrical information. To recover that as well, one can proceed as in [1] or following
the more detailed scheme of [2]. Neither approach captures in any essential manner the
Lorentzian character of the metric, however. (Indeed, the latter scheme is actually incom-
patible with Lorentzian signature.) The question thus arises whether there exists a similar
“algebraization” of spacetime based not on its topological and metrical attributes but on

its causal order.

The finding of such a correspondence could be expected to hold interest for more than
one reason. On one hand, some workers, going back to [3], have viewed algebraization as
potentially a means by which to introduce a fundamental spacetime discreteness, a view
which appears to account for much of the current interest in “non-commutative geometry”.
On the other hand, algebraization has from the outset been one of the royal roads to the
“quantization” of a theory, so that one might hope that any new equivalence between
intrinsic and algebraic descriptions of spacetime — or of whatever hypothetical substratum
one takes to replace spacetime — would open up new avenues for building a theory of
quantum gravity. It is this second prospect that primarily animates the considerations of
the present paper, which are inspired by the hypothesis that the deep structure of spacetime
is that of a causal set [4] [5]. Since this structure is already inherently discrete, there is no
need to introduce discreteness and therefore no reason to appeal to algebraization on that
score. Nonetheless, one may still feel it useful to attempt various algebraic reformulations
of causal set kinematics in the hope that one of them might help lead us to the correct

quantum theory of causal set dynamics. I will have a bit more to say about this in the



conclusion, but for now let us turn to the mathematical question that will primarily concern

us herein: that of finding a suitable “algebraization” of the poset concept.

As I remarked earlier, a relativistic spacetime is inherently a partial order’ (at least
to the extent that one can count on the impossibility of “time travel”). A causal set is also
a partial order, but with the crucial difference that it is locally finite. * Rather than seeking
an algebra to capture the structure of an arbitrary poset, then, let us confine ourselves to
the simpler case of locally finite orders; in fact let us simplify still further to the case of

orders whose cardinality is strictly finite.

So let C be a poset of finite cardinality. Does there exist an algebra 2l naturally
associated to C' and from which, conversely, C' can be recovered? One algebra that people
have studied in this connection is the so called incidence algebra of C, which one might
view as an algebra of retarded (or, dually, advanced) functions on C'xC, the product being
given by convolution. In the finite case, this is just a matrix algebra, or more accurately, it
is the algebra of all matrices with zeros in certain specified locations which reflect directly

the defining order relation < of C.

It is known that the incidence algebra does indeed capture the structure of C, at least if
one interprets < reflexively in the sense that the diagonals of the matrices representing the
elements of 2 are left free. Remarkably, the nature of the space <+ algebra correspondence
in this case can be arranged to be closely analogous to that of the Gel’fand isomorphism,
even though the algebra which figures in the latter is commutative and semisimple, whereas
an incidence algebra is not only non-commutative, but almost nilpotent (which is about as
far from semi-simplicity as one can get). Despite these differences, one can in both cases
choose to identify the elements of the underlying space with the maximal two-sided ideals
of A, as explained in [9] and [10].

g Order, partial order, partially ordered set, poset, and ordered set are all synonyms.

* A poset is called locally finite if all its intervals are finite. If this is strengthened to
the requirement that its “upward” and “downward” sets be separately finite, the poset
becomes suitable to represent a “finitary topological space”. Posets of this type have been
the subject of much work by the dedicatee and his co-workers, but in a spatial context
rather than a spacetime one [6]. (See also [7] [8]). The results to be proven below will of
course apply equally well in this context.



As we will see in a moment, however, there is quite a different way to set up a
correspondence between C' and 2 in the poset case, and this is perhaps fortunate, in
that one might feel uncomfortable with certain features of the Gel’fand-like scheme as
adapted to partial orders. A first concern arises from the circumstance that it is not the
fundamental order relation < as such that one directly recovers between elements regarded
as maximal ideals, but rather the “nearest neighbor” or link relation’ [9] [11]. The full
precedence relation must then be re-generated via transitive closure. In the purely discrete
case, this is always possible, so viewing one relation as more or less “fundamental” than
the other seems largely a matter of taste. However, the failure to recover < directly
could bode ill in a continuum context where the simple precedence relation continues to
make sense but links no longer exist (since between any two causally related points, one
can always interpolate a third). Moreover, even for finite posets C, the correspondence
between elements and maximal ideals falls apart if one adopts the irreflexive convention”
for C', and this is disturbing because one would hope that a choice of convention would
not influence the underlying relationships so strongly. Again, one might hope that some

other scheme would be more robust in this regard.

In view of such doubts, it seems worth exploring other ways to recover a poset from
its incidence algebra, a task we begin here by showing that it is equally possible to identify
the poset elements, not with the maximal ideals, but with certain indecomposable ideals;
and by doing so one obtains the precedence relation directly as a relation between the
corresponding ideals. Of course, it would also make sense to explore alternatives to the

incidence algebra itself, but I will not attempt that in this paper.

Some Definitions

A finite order is a set C' comprising a finite number of elements and carrying a “precedence
relation” < which is transitive and asymmetric. That is, for arbitrary elements x,y, z of
C we always have r < y < z = x < 2z, and we never have x < y < = when x and y are
distinct. In addition we will always assume, unless stated otherwise, that < is reflexive,

i.e. that every element = precedes itself: = < z. Although, this is in some sense merely

T Also called “covering relation” in the mathematical literature.

> defined below



a convention that one can adopt or reject at will, it turns out to influence profoundly the

structure of the incidence algebra. *

We can now define the incidence algebra of C by introducing for each related pair
x <y a generator [xy] and taking 2 to be the set of formal linear combinations of these
generators. The order structure of C' is then further encoded in the rule for multiplication
of algebra elements as given by the relation [zy] - [yz] = [zz], for all triples x < y < z. For
definiteness, we will take the field of scalars to be the complexes C, although nothing will

depend on this.

Two other representations of the incidence algebra are useful and (for finite C) strictly
equivalent to the definition just given. First one may think of 2 as an algebra of n x n
matrices, where n = |C| is the cardinality of C' and the generator [zy] corresponds to the
matrix with a single 1 in row x, column y and zeros everywhere else. T The asymmetry
of the relation < then translates into the fact that if one chooses a suitable labeling for
the elements of C' (a so called natural labeling) then all the matrices representing members
of 2 are upper triangular (but not strictly so, inasmuch as diagonal generators like [zz]
are also part of 2 thanks to our standing assumption that < is reflexive). A slightly
different representation of 2 comes from thinking of the entries of the matrix as the values
of a “two-point function” f : C x C'—C. With this representation a member of the
incidence algebra is an arbitrary advanced function and the algebra product is convolution:
f=9g-h < f(zx,2) = Zy g(x,y)h(y, z). Of course this is just the formula for matrix

multiplication in a slightly different notation.

By an ideal I of 2, T will always mean, in this paper, a two-sided ideal, in other
words a nonempty subset of 2 closed under addition, scalar multiplication, and left or
right multiplication by an arbitrary element of 2. Note in this connection that, by virtue
of our choice of reflexive convention for C', 2 is automatically “unital”: it has an identity

element given by 1 = [xx] + [yy] + [22] + - - -, where the sum extends over all elements of C'.

* For example, with the reflexive convention, 2( has in general more idempotents than C

has elements, whereas with the opposite, irreflexive convention, 2l has no idempotents at
all.

T In the Dirac notation, this correspondence reads [zy] = |z)(y|, a notation that was used
in [9].



Consequently there is no need to distinguish, for example, “regular ideals” from irregular

ones [12].

The sum I, +1, of two ideals I; and I, is the collection of all sums a, +a, where a; € I,
and ay € I,. Equivalently I; + I, is the least ideal containing both I; and I,: it is their
“join” in the lattice of ideals of 2. An indecomposable ideal in A is then a non-zero ideal
that cannot be expressed as the sum of two ideals distinct from itself. (In the language of
lattice theory, such an ideal is said to be “join irreducible”. A closely related notion was
employed in the definitions of TIP and TIF in [13].) By a mazimal indecomposable ideal 1
will mean an indecomposable ideal that is contained properly in no other indecomposable
ideal. One also defines simply a mazimal ideal I # 2 as one which cannot be enlarged
without coinciding with 2. (Thus, a maximal ideal is a maximal element in the family of
all ideals not equal to 2, while a maximal indecomposable ideal is a maximal element in

the family of all indecomposable ideals.)

The product I1.J of two ideals I and J is the collection of sums of products of members
of I with members of J; in other words I.J is the linear span of {zy |z € I,y € J}. From
the definitions it is immediate that I.J is also an ideal and is contained in both I and J. It
is, however, not in general equal to their intersection I N J, which would be their “meet”

in the lattice of ideals.

Finally, we define within an arbitrary order P a downward set as a subset D C P that
is closed under “taking of pasts”: x <y € D = x € D. An upward set U is defined dually.

(In spacetime language, these could be called, respectively, “past sets” and “future sets”.)

Recovery of the poset from its incidence algebra

Our main result can be stated as a theorem:

THEOREM Let C be a finite order (with reflexive convention) and let 2 be its incidence
algebra. Then the elements = of C correspond bijectively with the maximal indecomposable

ideals I of 2(, and under this correspondence the relation x; < x4 goes over to I;1, # 0.

Before proving the theorem, let us notice a sense in which this (or any other) equiv-

alence between a poset and its incidence algebra is somewhat less satisfactory than the



Gel’'fand isomorphism mentioned earlier, the flaw being that 2l has in general more auto-
morphisms than C has. ’ Although the isomorphism equivalence class of 2 can be deduced
from that of C' and conversely, there is thus some “looseness” in the correspondence that
is not present in the Gel’fand case. Possibly related is the failure, pointed out in [14], of
the correspondence between a poset and its incidence algebra to be functorial between the
category of finite orders with isotone mappings and the category of algebras with algebra

homomorphisms. *

The ideals of 2

We will prove the above theorem by classifying the ideals of 2. To this end, let us notice
that every member of 2 has a unique expression as a sum of multiples of the generators
[zy] that we defined earlier. To convey the fact that one particular such generator [zy]
occurs with a nonzero coefficient in some member of the ideal I, let me say, for lack of a
better word, that [xy] “figures in I”. In contrast, the statement that [zy] “is an element of
I” (in symbols, [xy] € I) means that some A € I literally coincides with [zy]. In the matrix
representation of , a generator [zy| corresponds to a particular location in the matrix. It
then “figures in” I if some matrix of I has a nonzero coefficient in that location, whereas
it is an element of I if some matrix of I has a 1 in that location and zeros everywhere else.

In these terms we can now state a key lemma.

LEMMA If some [zy] “figures in” the ideal I then it is actually an element of I

> Because the algebra 2l is not commutative, it will in general possess continuous fam-
ilies of inner automorphisms, whereas C', being a finite set, can have at most finitely
many automorphisms. On the other hand, it looks as if the superfluity due to the
inner automorphisms might be the only one. That is, it looks as if we might have
Aut(C) ~ Outer(2) := (Aut)/(Inner ), where (Inner2l) is the group of inner auto-
morphisms of 2.

* This is not necessarily a “failing” in itself. For example, the association to a manifold
M of its tensor algebra is not functorial, nor (as remarked to me by Chris Isham) is the
association to M of its diffeomorphism group. Nevertheless, for certain purposes the lack
of functoriality can be a problem, e.g. if one wished to reproduce the limiting process of
[7] in terms of incidence algebras.



PROOF By assumption there is A € I such that A = a[zy| + B where « is a nonzero
scalar and B is a sum of multiples of pairs [uv] such that either w differs from = or v
from y. But this means that [zz]B[yy] = 0 because the same holds for every one of its
constituent pairs [uv]. Hence [zz]Alyy] = alzz][zy][yy] = a|zry] is a multiple of [zy], and
this implies immediately that [xy] itself belongs to I by the definition of an ideal. (Namely
[zy] = (1/a)[zz]Alyy] must be an element of I if A is one.)

COROLLARY Every ideal I of 2 is the set of all linear combinations of some unique set
U(I) of generators [zy].

That is, we have for every ideal of the incidence algebra, I = spanl{(I), where U(I) =
{z11]; [T2Ys];s [3y3], - - - [2,9,]}, with the [z,y;] being uniquely determined by I and con-
versely. It is moreover, easy to figure out which sets of pairs can belong to an ideal in this
way. Let S =U(I) besuch aset. If [xy] € Sand u < = < y < v then [uv] = [uz][zy][yv] € I
and therefore [uv] € S. Thus S is necessarily closed under the process of “passing to nested
pairs”. To express this succinctly let us formally introduce this “nesting” as an order re-

lation among pairs.
DEFINITION [zy] < [uv] <= u <z and y < v

This definition makes the set of all pairs [zy| into a poset T, and with reference to this
auxiliary poset, we see that the sets U(I) are precisely the upward sets of I'. Thus we have

proved:

THEOREM The ideals of 2 correspond bijectively with the upward sets of the poset I' of
pairs [z, y]

Moreover, the relation of inclusion between ideals obviously mirrors exactly the relation of

inclusion between the corresponding upward sets. In particular, we have
LEMMA Ul +J)=U(T)UU(J])

PROOF Recall that I + J is precisely the smallest ideal including both I and J; and

notice that the union of two upward sets is also an upward set.

It follows immediately that an ideal I is indecomposable iff its corresponding upward
set, U(I), is not the union of two upward sets distinct from itself. But in any (finite) poset
an upward set has this property iff it is (empty or) what might be called a principal upward
set, that is iff it has the form {n|£{ < n} for some £. We have thus shown:



THEOREM The indecomposable ideals of 2 correspond bijectively with the pairs [zy],
r,2yelC,z<y

From this we can easily conclude that the mazimal indecomposable ideals correspond
precisely with the principal upward sets of minimal elements of I', which in turn are clearly

the diagonal pairs [zz], for z€C. In other words:
LEMMA An ideal I C 2 is mazimal indecomposable <= I =2 [xx] 2 for some x € C

This substantiates the first assertion of our main theorem. " In order to complete the
proof, we have only to verify that I, I, # 0 iff x<y, where I've written I, for 2 [zx]2(. But

this is completely straightforward. In fact, we have:

LEMMA Let J(z,y) = A [zy]2A denote the principal ideal generated by [ry]. Then the

product J(z,y) I(u,v) equals J(z,v) when y < u, and zero otherwise.

PROOF Write 8 for the product in question. Because 2l is unital, 2421 = 2(, whence
B = Azy] AA [uv] A = A [xy] A[uv] A. Now, [zy]A[uw] #0 <= [yu] € A —= y < u,
and in that case, clearly, B = A [zy] [yu] [uv] A = A [xv] 2.

COROLLARY 3J(z,x)3(y,y) equals J(z,y) when x<y, and zero otherwise.

Our main theorem is thus demonstrated. Along the way, we have seen that every
indecomposable ideal is a principal ideal (of some pair [zy]). We have also found (in view
of the most recent lemma) an equivalent way to characterize the maximal indecomposable
ideals: An indecomposable ideal I is maximal iff it is idempotent in the sense that 11 =1
(which happens iff 1T # 0).

Finally, it bears remarking that the last lemma actually furnishes an order on the full

set of indecomposable ideals. Since every such ideal has the form 2 [zy] 2 for some [zy],

f Very similar reasoning yields the “Gel’fand correspondence” between maximal ideals and
elements of C', since a maximal upward set in I' is precisely the complement of a single
minimal element of I, i.e. (as we have just observed) of a single pair [zz]. However, if our
only purpose were to classify the maximal ideals of 2, it would be simpler just to adopt
the representation of an element of 2 as a matrix and pay attention to the set of zeros on
its diagonal.



the substrate of this order can be taken to be the set of pairsb x < y of elements of C' and
its precedence relation is then [zy] < [uv] <= y < u. (Such an order is often called an
“Interval order”.) It is actually this order that we recover most directly from the algebra
2. Interestingly enough, it is neither reflexive nor irreflexive. * Rather, it is precisely its

reflexive elements that correspond to elements of the underlying poset C'.

Remarks

With the proof of our main theorem, we are in the curious position of being able to discern
two very different algebraic images of our original poset C' within its incidence algebra
2. On one hand, we can identify the element x € C with the ideal generated by [zx], on
the other hand with the ideal of all algebra elements omitting [xx]. Depending on which
possibility one selects, one recovers from the ideals either the relation < or its associated
link relation, respectively. Either way, one can conclude that the full structure of C' is

captured by 2.

However, with the second scheme, this conclusion rests heavily on our assumption
that C' is finite, which (trivially) guarantees enough discreteness so that any two related
elements of C' can be joined by a chain of links. In a continuum such as a Lorentzian
manifold (or for a countable dense set thereof), this is assuredly not the case because no
links are present at all. Hence the construction which recovers < directly (that based
on maximal indecomposable ideals) seems more robust from this point of view. It might
be interesting to test whether this is indeed true by generalizing 2 to, say, a globally
hyperbolic spacetime M and asking whether some suitable analog of the construction of
this paper would give back the metric of M. (This would require one to recover the volume
density y/—g in addition to the causal order of M, but that is not obviously impossible,

since y/—g does enter into 2, via the definition of the convolution product.)

Of course, it would also be interesting to investigate possible inter-relationships be-

tween the two schemes for recovering the elements of C'. Perhaps they could already be

g Thus, the order in question shares its substrate with the order I'. The two precedence
relations are obviously very different, however.

* providing a counter-argument to the opinion that the choice between the two possibilities
is always purely conventional!
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seen to be equivalent at the algebraic level, or perhaps they complement each other in

some way.

Concerning physical applications of the duality between a poset and its incidence
algebra, there seems not much to say at present. If one is thinking in terms of quantum
gravity and causal sets, then trading a causal set C for its incidence algebra 2l is not
necessarily a step in the right direction, because a quantal “sum over causal sets” seems
easier to imagine (as in [5]) than a corresponding “sum over algebras 2[”. On the other
hand, the physical causal set C' is not the only poset to figure in the theory. The “poset of
stems” played an important role in the considerations of [5], where it served as a fixed arena
allowing one to define conveniently the Markov process of “classical sequential growth”.
(This poset is illustrated in Figure 1 of [5]. Its elements are the finite orders, and its
precedence relation is “inclusion as a downward set”.) Perhaps the incidence algebra of
this poset could play a role in the search for a physically appropriate dynamics of “quantal
sequential growth”. Such a dynamics would provide the quantal analog for causal sets
of the classical Einstein equations for continuum Lorentzian manifolds. That is, it would

provide a theory of quantum gravity.

Returning to the realm of pure mathematics for a moment, one can ask whether
algebras other than the incidence algebra might have a role to play in the “algebraization”
of the poset concept. If so, the new algebra might be constructed either from the incidence
algebra or directly from the elements of the poset. Here, just to illustrate the type of
thing one could consider, is an algebra of the second sort. It might even be trivial as far
as I know, but at least it is not as obviously trivial as some similar possibilities I played
with first! One takes for generators the elements of C' itself, and one imposes three sets of
relations: (i) a < b < ¢ = abc =ac; (ii) a # b= aba = 0; (iii) a # b, a < b= ba = 0. If
this construction is worthy of further consideration, one might begin by asking whether it

is functorial and how the resulting algebra’s automorphism group relates to that of C.

I would like to thank Prakash Panangaden, loannis Raptis and Kamesh Wali for inspiration
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