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Abstra
t

We model a bla
k hole spa
etime as a 
ausal set and 
ount, with

a 
ertain de�nition, the number of 
ausal links 
rossing the horizon

in proximity to a spa
elike or null hypersurfa
e �. We �nd that this

number is proportional to the horizon's area on �, thus supporting

the interpretation of the links as the \horizon atoms" that a

ount

for its entropy. The 
ases studied in
lude not only equilibrium bla
k

holes but ones far from equilibrium.

1 Introdu
tion

Despite all the eviden
e for an entropy asso
iated with the horizon of a

bla
k hole, a full understanding of its statisti
al origin is still la
king and it

remains un
ertain what \degrees of freedom" the entropy refers to.
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Ideally

one would appeal for the answer to some more fundamental quantum theory

of spa
etime stru
ture, but unfortunately no approa
h to 
onstru
ting su
h

a \quantum gravity" theory has advan
ed far enough to o�er a de�nitive

a

ount of what the horizon \degrees of freedom" might be. Nevertheless, it is

hard to doubt that bla
k hole thermodynami
s has opened up a path leading
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To appear in a spe
ial issue of Foundations of Physi
s in honor of Ja
ob Bekenstein,

\Thirty years of bla
k hole physi
s", edited by L. Horwitz.
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The question is ni
ely posed in [1℄.
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to a better knowledge of the small s
ale stru
ture of spa
etime. Indeed, the

role being played by bla
k hole thermodynami
s in this 
onne
tion looks more

and more analogous to the role played histori
ally by the thermodynami
s

of a box of gas in revealing the underlying atomi
ity and quantum nature of

everyday matter and radiation. We 
an bring out this analogy more 
learly by

re
alling some fa
ts about thermodynami
s in the presen
e of event horizons.

One often thinks of entropy as measure of missing or \unavailable" infor-

mation about a physi
al system, and from this point of view, one would have

to expe
t some amount of entropy to a

ompany an event horizon, sin
e it is

by de�nition an information hider par ex
ellen
e. In parti
ular, one 
an as-

so
iate to ea
h quantum �eld in the presen
e of a horizon the \entanglement

entropy" that ne
essarily results from tra
ing out the interior (and therefore

ina

essible) modes of the �eld, given that these modes are ne
essarily 
orre-

lated with the exterior modes. In the 
ontinuum, this entanglement entropy

turns out to be in�nite, at least when 
al
ulated for a free �eld on a �xed,

ba
kground spa
etime. However, if one imposes a short distan
e 
uto� on

the �eld degrees of freedom, one obtains instead a �nite entropy; and if the


uto� is 
hosen around the Plan
k length then this entropy has the same

order of magnitude as that of the horizon. Based on this appealing result,

there have been many spe
ulations attributing the bla
k hole entropy to the

sum of all the entanglement entropies of the �elds in nature.

Whether or not the entanglement of quantum �elds furnishes all of the

entropy or only a portion of it, 
ontributions of this type must be present,

and any 
onsistent theory must provide for them in its thermodynami
 a
-


ounting. The 
ase appears to be similar to that of an ordinary box of gas,

where we know that, fundamentally, the �niteness of the entropy rests on

the �niteness of the number of mole
ules, and to lesser extent on the dis-


reteness of their quantum states. Indeed, at temperatures high enough to

avoid quantum degenera
y, the entropy is, up to a logarithmi
 fa
tor, merely

the number of mole
ules 
omposing the gas. The similarity with the bla
k

hole be
omes evident when we remember that the pi
ture of the horizon as


omposed of dis
rete 
onstituents gives a good a

ount of the entropy if we

suppose that ea
h su
h 
onstituent o

upies roughly one unit of Plan
k area

and 
arries roughly one bit of entropy. A proper statisti
al derivation along

these lines would require a knowledge of the dynami
s of these 
onstituents,

of 
ourse. However, in analogy with the gas, one may still anti
ipate that the

horizon entropy 
an be estimated by 
ounting suitable dis
rete stru
tures,

analogs of the gas mole
ules, without referring dire
tly to their dynami
s.
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Clearly, this type of estimation 
an su

eed only if well de�ned, dis
rete

entities 
an be identi�ed whi
h are available to be 
ounted. Within a 
on-

tinuum theory, it is hard to think of su
h entities. Indeed, if one a

epts

the estimates 
arried out below, the entropy would 
ome out in�nite were

spa
etime a true 
ontinuum. It would diverge with the 
uto� at the same

rate as the aforementioned entropy of entanglement of an ambient quantum

�eld. In 
ausal set theory, on the other hand, the elements of the 
ausal set

serve as \spa
etime atoms", and one 
an ask whether these elements, or some

related stru
tures, are suited to play the role of \horizon mole
ules". In this

paper, we will identify a 
ertain kind of \
ausal link" as one su
h stru
ture

and we will show that the bla
k hole entropy 
an be equated to the number

of su
h links 
rossing the horizon H in proximity to the hypersurfa
e � for

whi
h the entropy is sought. Moreover, almost all of these links will turn out

to be lo
alized very near to H. In 
onsequen
e, 
onditions deep inside the

bla
k hole will be
ome irrelevant to the 
ounting, as indeed they must do if

any interpretation of the entropy in terms of \horizon degrees of freedom" is

to su

eed.

2 Counting Links

Before pro
eeding, let us brie
y review the terminology we will use. For a

fuller introdu
tion to 
ausal sets, see [2℄ and referen
es therein.

A 
ausal set (or \
auset") is a lo
ally �nite, partially ordered set. We

use � to represent the order relation and adopt (in this paper) the re
exive


onvention, a

ording to whi
h every element pre
edes itself: x�x. Let C

be a 
auset and let x and y be elements of C. The past of x is the subset

past(x) = fy 2 C j y � xg and its future is future(x) = fy 2 C j x � yg. If

x; y2C, x � y, and future(x) \ past(y) = fx; yg then we 
all the relation

x � y a link. Note that (thanks to the lo
al �niteness) if the links of a 
auset

are given, then all the other relations are implied by transitivity; hen
e the

whole stru
ture of the 
auset is en
oded in its irredu
ible relations or links.

An element of a 
auset (or of a sub
auset) is maximal (resp. minimal) i� it

is to the past (resp. future) of no other element in the 
auset (or sub
auset).

Now the basi
 hypothesis of 
ausal set theory is that spa
etime, ulti-

mately, is dis
rete, and its deep stru
ture is that of a partial order rather

than a di�erentiable manifold. The ma
ros
opi
 spa
etime 
ontinuum of

experien
e must then be re
overed as an approximation to the 
auset. Al-
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though a more sophisti
ated notion of approximation might ultimately be

needed [3℄, the intuitive idea at work here is that of a \faithful embedding".

If M is a Lorentzian manifold and C a 
ausal set, then a faithful embedding

of C into M is an inje
tion f : C

!

M of the 
auset into the manifold that

satis�es the following requirements: (1) The 
ausal relations indu
ed by the

embedding agree with those of C itself, i.e f(x) 2 J

�

(f(y)) i� x � y, where

J

�

(p) stands for the 
ausal past of p in M ; (2) The embedded points are

distributed with unit density, and (3) the 
hara
teristi
 length over whi
h

the geometry varies appre
iably is everywhere mu
h greater than the mean

spa
ing between the embedded points. When these 
onditions are satis�ed,

the spa
etime M is said to be a 
ontinuum approximation to C. From the

point of view of an M , the 
auset resembles a \random latti
e" obtained by

\sprinkling in points" until the required density is rea
hed. Thus, the prob-

ability that there will be n embedded points in a given volume V is given by

the Poisson distribution, (%




V )

n

e

�%




V

=n!, where the fundamental density %




is unknown but presumed to be of Plan
kian magnitude.

Let us now 
onsider the entropy asso
iated with a horizon in a spa
e-

time M in whi
h a 
auset C is faithfully embedded. As dis
ussed in the

introdu
tion, we expe
t that the entropy 
an be understood as entanglement

in a suÆ
iently generalized sense, and we may hope to estimate its leading

behavior by 
ounting suitable dis
rete stru
tures that measure the potential

entanglement in some way. At the same time, we know that the entropy

essentially just measures the horizon area, when
e, phenomenologi
ally, our

dis
rete stru
tures must turn out to be equal in number to the horizon area,

up to small 
u
tuations.

3

From both points of view, a natural 
andidate for

the stru
ture we seek is a link of the 
auset. Indeed, we may think heuristi-


ally of \information 
owing along links" and produ
ing entanglement when

it 
ows a
ross the horizon during the 
ourse of the 
auset's growth (or \time

development"). Sin
e links are irredu
ible 
ausal relations (in some sense the

building blo
ks of the 
auset), it seems natural that by 
ounting links be-

tween elements that lie outside the horizon and elements that lie inside, one

would measure the degree of entanglement between the two regions. Equally,

3

In fa
t, it seems far from obvious that su
h stru
tures must exist. If they do, then

they provide a relatively simple, order theoreti
 measure of the area of a 
ross se
tion of

a null surfa
e, and, unlike what one's Eu
lidean intuition might suggest, it is known that

su
h measures are not easy to 
ome by. For example, no one knows su
h a measure of

spa
elike distan
e between two sprinkled points that works in even su
h a 
omparatively

simple 
ase as a sprinkling of Minkowski spa
etime [4℄.
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it seems natural that the number of su
h 
ausal links might turn out to be

proportional to the horizon area, as desired.

2.1 An equilibrium bla
k hole

Let us now 
onsider a spheri
ally symmetri
 
ollapsing star whi
h produ
es

a bla
k hole with horizon H, and let � be a (null or spa
elike) hypersurfa
e

on whi
h we wish to evaluate the horizon entropy. For simpli
ity we shall

ignore the in
uen
e of the 
ollapse and treat the bla
k hole metri
 as exa
tly

S
hwarzs
hild in the region of interest. If our pi
ture is 
onsistent, doing so


annot 
hange anything, and we will see eviden
e for this further into the


al
ulation. Thus, we will work with an eternal bla
k hole spa
etime M , as

shown in Figure 1. Noti
e, however, that only the portion of the extended

S
hwarzs
hild spa
etime that 
ould have arisen from a 
ollapse is to be taken

into 
onsideration (i.e. the region exhibited in the diagram).

Now let C be a 
auset produ
ed by randomly sprinkling points into M

with density %




= 1 in 
ausal set units; by de�nition, then, C is faithfully

embedded in M . Let x be a sprinkled point in the region J

�

(H) \ J

�

(�),

and let y be a se
ond sprinkled point in J

+

(H) \ J

+

(�). (In other words,

x is outside the bla
k hole and to the past of �, while y is inside the bla
k

hole and to the future of �.) To say that x � y is a link of C means that

the \Alexandrov interval", J(x; y) := J

+

(x) \ J

�

(y), is empty of sprinkled

points ex
ept for x and y: no sprinkled point lies 
ausally between x and y.

Su
h a pair (x; y) might seem to be a good 
andidate for the sort of \horizon

mole
ule" we wish to 
ount.

In fa
t the 
ounting redu
es to the 
al
ulation of an integral, sin
e, as a

simple 
onsideration shows [5℄, the expe
ted number of su
h pairs is

<n> =

Z

D

e

�V (x;y)

dV

x

dV

y

: (1)

Here V (x; y), whose presen
e serves to ensure the link 
ondition, is the vol-

ume of J(x; y), andD is the domain of integration for x and y. Unfortunately,

if we impose no further 
onditions on x and y, then the integral (1) 
an be

shown to diverge when � is spa
elike. Therefore, the links we have identi�ed


annot be the ones we want.

To help understand the meaning of this divergen
e, let us remember that,

intuitively, we are trying to estimate, not the sum total of all \lost informa-

tion", but only that 
orresponding \to a given time", meaning in the vi
inity
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Σ

v=v 0

y

x

H

r=0

Figure 1: An equilibrium bla
k hole and null hypersurfa
e �

of the given hypersurfa
e �. Hen
e, to asso
iate one and the same 
ausal

link with more than one hypersurfa
e would be to \over
ount" it in forming

our estimate, and it is this over
ounting that seems to be the sour
e of our

divergent answer. Thus, what we need is a further 
ondition or 
onditions on

x and y that would be satis�ed only by links that truly belong to � rather

than to some earlier or later hypersurfa
e. Several possibilities suggest them-

selves for this purpose, for example the requirement that x be maximal in

J

�

(�), but none seems to be 
learly best. Fortunately, the end result seems

to be relatively insensitive to whi
h 
hoi
e one makes. The pre
ise 
onditions

we will use will be spe
i�ed below, and the general issue will be dis
ussed

further in Se
tion 3.
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Now, ideally we would have evaluated <n> for a fully four dimensional

S
hwarzs
hild bla
k hole, but unfortunately, this is rendered diÆ
ult by the

need to know all the Alexandrov neighborhoods J(x; y) of the S
hwarzs
hild

metri
. For this reason, we will simplify the 
al
ulation by working with

a \dimensionally redu
ed" two dimensional metri
 instead of the true, four

dimensional one. As the 
al
ulation pro
eeds, it will be
ome very plausible

that (for ma
ros
opi
 bla
k holes) the full four-dimensional answer would

di�er from the two-dimensional one only by a �xed (albeit still unknown)

proportionality 
oeÆ
ient of order unity, together with a fa
tor of the horizon

area. This will e�e
tively a

omplish our primary aim of demonstrating that

the expe
ted number of links is proportional to the area of the horizon in


auset units.

A radial se
tion of a four dimensional S
hwarzs
hild spa
etime has a

line element obtained by omitting the angular 
oordinates from the four

dimensional line element, namely

ds

2

= �

4a

3

r

e

�r=a

dudv ;

where a is the radius of the bla
k hole (S
hwarzs
hild radius) and u and v

are the usual Kruskal-Szekeres 
oordinates, with r de�ned impli
itly by the

equation

4

uv =

�

1�

r

a

�

e

r=a

: (2)

The asso
iated volume element is

d

2

V =

p

�g dudv =

2a

3

r

e

�r=a

dudv : (3)

Now let � be the ingoing null hypersurfa
e de�ned by the equation v = v

0

,

and let (x; y) be a pair of sprinkled points satisfying the following 
onditions:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

x 2 J

�

(�) \ J

�

(H)

y 2 J

+

(�) \ J

+

(H)

x � y a link

x maximal in J

�

(�) \ J

�

(H)

y minimal in J

+

(H)

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(4)

4

Our signs are su
h that u � t � r, v � t + r, and the horizon H will 
orrespond to

u = 0.
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(For a null � in two dimensions, the fourth 
ondition is a
tually redundant,

but it would be needed with a spa
elike �.) In order that these 
onditions

be ful�lled, no sprinkled point (other than x or y) must fall into the shaded

region depi
ted in Figure 1. The volume of this ex
luded region is readily

evaluated and is given by

V = a

2

+ r

2

xy

� r

2

xx

� r

2

yy

;

where we have adopted the notation,

u

i

v

j

=

�

1�

r

ij

a

�

e

r

ij

=a

: (5)

In analogy with equation (1), the expe
ted number of links satisfying our


onditions is therefore

<n> =

�

2a

3

�

2

Z

v

0

0

dv

x

Z

0

�1

du

x

Z

1

v

0

dv

y

Z

1=v

y

0

du

y

e

�r

xx

=a�r

yy

=a

r

xx

r

yy

e

�V

A 
hange of integration variables from (u

x

; v

x

; u

y

; v

y

) to (r

xx

; r

x0

; r

xy

; r

yy

),

followed by the notational substitutions x = r

xy

, y = r

x0

, z = r

xx

, now

redu
es <n> to the form,

5

<n> = 4 I(a) J(a) ;

where

I(a) =

Z

1

a

dx

x

x� a

e

�x

2

Z

x

a

dy

y

y � a

Z

y

a

e

z

2

dz (6)

and

J(a) = e

�a

2

Z

a

0

e

r

2

yy

dr

yy

: (7)

Noti
e that <n> does not depend on v

0

, re
e
ting the stationarity of the

bla
k hole.

Now, inasmu
h as 
omparison with the Bekenstein-Hawking entropy is

meaningful only for ma
ros
opi
 bla
k holes, we might as well assume that

a � 1, and in that regime, I(a) 
an be shown [5℄ to have the following

asymptoti
 behavior:

I(a) =

�

2

12

a+O

�

1

a

�

:

5

Here r

x0

is of 
ourse the radial variable 
orresponding via (5) to the produ
t u

x

v

0

. To

avoid 
onfusion, noti
e that the dummy integration variables x, y and z are real numbers

entirely distin
t from the sprinkled points x and y.
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On the other hand it is not diÆ
ult to see that

J(a) =

1

2a

+O

�

1

a

3

�

:

Putting everything together, we end up with

<n> =

�

2

6

+O (1=a) : (8)

Although our 
al
ulation has been 
arried out in two dimensions, a study

of the integrals I(a) and J(a) indi
ates that, were we to redo it in four di-

mensions, the expe
ted number of links would redu
e to essentially the same

expression. Indeed, the dominant 
ontribution to the integral J(a) plainly


omes from r

yy

� a, but sin
e r

yy

is the radial 
oordinate r of sprinkled point

y, and sin
e r = a is the horizon, this implies that y resides near the horizon.

Similarly, the dominant 
ontribution to the integral I(a) 
omes from z � a,

whi
h, sin
e z = r

xx

, implies in turn that sprinkled point x resides near the

horizon as well. Consequently our 
ounting 
an be said to be 
ontrolled by

the near horizon geometry. But in four dimensions, this geometry is lo
ally

just the two dimensional one times the Eu
lidean plane. Thus, one would

expe
t <n> to be simply proportional to the area of the horizon. Moreover,

from (8), one would expe
t the 
oeÆ
ient of proportionality to be of order

unity, although there is of 
ourse no reason for it to be exa
tly �

2

=6.

It is interesting that part of what makes the near horizon pairs spe
ial

is the vanishing of the denominators in I(a) when the dummy integration

variables x and y tend to a. To the extent that it is this divergen
e whi
h

makes the horizon su
h a strong sour
e for the links, we may be reminded of

the analogous fa
t that the strong redshift in the vi
inity of the horizon allows

modes of arbitrarily high (lo
al) frequen
y to 
ontribute to the entanglement

entropy without in
uen
ing the energy as seen from in�nity. Noti
e also that

the 
lustering of x and y near the horizon is not simply a 
onsequen
e of the

maximality and minimality 
onditions we imposed on them. For instan
e,

pairs (x; y) sitting arbitrarily 
lose to the hypersurfa
e �, with y arbitrarily


lose to the horizon, still do not 
ontribute to the leading term in I(a) if x

is far from the horizon, namely with 
oordinate ju

x

j � 1.

2.2 A bla
k hole far from equilibrium

Turning now to a 
ase whi
h, though still spheri
ally symmetri
, is very far

from equilibrium, let us 
onsider a shell of null matter whi
h 
ollapses to

9



x

y
collapsing null shell

Vacuum

Eve
nt 

Hor
izo

n

v=a

v=b

Σ

Figure 2: A non-stationary horizon and null hypersurfa
e �

form a S
hwarzs
hild bla
k hole. The Penrose diagram for this spa
etime

6

is shown in Figure 2. Let the shell sweep out the world sheet v = b and let

us 
hoose for our hypersurfa
e � a se
ond ingoing null surfa
e de�ned by

v = a, with a < b so that � lies wholly in the 
at region. Here u and v are

null 
oordinates, 
hosen so that the horizon �rst forms at u = v = 0 and

normalized for 
onvenien
e su
h that

ds

2

= �2dudv + r

2

d


2

:

Sin
e our interest is again in ma
ros
opi
 bla
k holes, we will assume as

before that the horizon radius is large in units su
h that %




= 1; and to

simplify matters further, we will also restri
t ourselves to a time well before

6

A fuller des
ription of this spa
etime may be found, for example, in [6℄.
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the infalling matter arrives (as judged in the 
enter of mass frame). We

thus have the double inequality, b�a�1. On
e again, we will perform the


al
ulation for the two dimensional radial se
tion rather than the full four

dimensional spa
etime.

Now sin
e we are assuming that the infalling matter is far to the future of

the hypersurfa
e �, points y sprinkled into that region should not 
ontribute

signi�
antly when our minimality and link 
onditions are taken into a

ount.

For this reason, we shall, for 
onvenien
e, restri
t our 
ounting to pairs (x; y)

with v

y

< b. Imposing, then, the same 
onditions (4) introdu
ed above, we

obtain for the expe
ted number of 
ausal links

<n> =

Z

b

a

dv

y

Z

v

y

0

du

y

Z

0

�1

du

x

Z

a

0

dv

x

e

�V

where V = u

y

v

y

� u

x

(v

y

� v

x

)� u

2

y

=2.

It is not diÆ
ult to derive the leading behavior of this integral for large

a, and here we quote only the �nal result:

<n> =

�

2

6

� l

�

a

b

�

+O(1=a) ;

where l(x) �

P

1

k=1

x

k

=k

2

, a 
onvergent series that vanishes in the limit x

!

0.

Sin
e we have assumed that a�b, we 
an write this more simply as

<n> =

�

2

6

+O(a=b) +O(1=a) : (9)

Noti
e that the presen
e of a negative 
ontribution like �l(a=b) was to be

expe
ted, sin
e we have omitted to 
ount links that extend past the shell into

the S
hwarzs
hild region. For � near to the shell, one obviously should not

negle
t su
h links, and our 
ounting is in
omplete.

Two features of the result (9) are espe
ially noteworthy. The �rst is its

independen
e of the value of a. As with the equilibrium bla
k hole above, this

indi
ates that the analogous four dimensional 
omputation would produ
e (at

leading order) an answer proportional to the horizon area. What is then even

more striking is the o

urren
e of the same numeri
al 
oeÆ
ient �

2

=6 in both

(8) and (9). This agreement furnishes a nontrivial 
onsisten
y 
he
k of the

suggestion that one 
an attribute the horizon entropy to the \
ausal links"


rossing it.
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Now what 
an one say about the 
ase where the hypersurfa
e � is spa
e-

like? In two dimensions it 
an be shown that < n > is again �nite and

independent of a to leading order. Although we have not 
arried the 
al
ula-

tion far enough to verify expli
itly that one obtains for it the same numeri
al

answer �

2

=6, one 
an make it plausible on general grounds that this would

have to happen. The point is that (in the 
at 
ase) the de�nition of <n>

is manifestly Lorentz invariant, when
e any spa
elike plane (or in this 
ase

line) � must give the same answer as any other related to it by a boost. But

in the limit of tilting, a spa
elike line be
omes null, and by 
ontinuity the


orresponding <n> should go over to �

2

=6 in this limit. Now observe that

a suitable boost transformation will 
onvert any nearly null line � into one

whi
h is \purely spa
elike" (and with a larger value of a). This gives a good

reason to expe
t that both null and spa
elike � must yield the same result.

Observe also, that a similar argument 
an be made for the S
hwarzs
hild


ase, using the time-translation Killing ve
tor instead of the boost Killing

ve
tor.

In four dimensions, the 
al
ulation of <n> needs a mu
h more elaborated

te
hnique, both for null and spa
elike hypersurfa
es. The 
al
ulation of the

volumes needed to insure the 
onditions (4) is lengthy, and it turns out that

one has to distinguish many 
ases depending on the relative positions of

the linked points x and y, ea
h 
ase making its own 
ontribution to <n>.

Fortunately, only a few of these 
ontributions survive for ma
ros
opi
 bla
k

holes (a� 1), and it should be possible to evaluate them all with suÆ
ient

e�ort. Here we give only the �nal result for one su
h 
ontribution, referring

the reader to referen
e [5℄ for further detail:

< n >

1

=

�

3

a

2

16

(
+O (1=a))

where


 =

Z

1

0

dx

Z

x

0

dy (x� y)

4

e

�

�

3

(

x

4

+y

4

)

� 0:0419

As indi
ated above, it is not diÆ
ult to 
onvin
e oneself on the basis of our

two dimensional experien
es that the number of links in four dimensions must

turn out to be proportional to the area of the horizon, or more pre
isely, to

the area of the two-surfa
e S = H \�. To re
all the reasoning: The surfa
es

H and � will look lo
ally like their two dimensional analogs extended trivially

by a portion of R

2

, but sin
e, as we saw, the main 
ontribution to <n> in

two dimensions 
ame from pairs just straddling H \ �, and sin
e lo
ally �

12



will also look 
at (like our two dimensional � was), and sin
e (as we argued)

all 
at � (null or spa
elike) give the same (�nite) answer in two dimensions,

so in four dimensions the density of links per unit surfa
e area of S will

be 
onstant, that is to say, their total number will be proportional to the

area of S, modulo subleading 
orre
tions. Moreover, the same should hold

for arbitrary hypersurfa
es � and arbitrarily 
urved horizons H, as long as

neither is so badly distorted as to exhibit signi�
ant 
urvature in the vi
inity

of a horizon point. A

epting all this, we 
an anti
ipate the general formula

for four dimensions:

<n> = 


A (H \ �)

l

2




0

�

1 +O

0

�

l




q

A (H \ �)

1

A

1

A

;

where A(H \ �) is the area of the 2-surfa
e in whi
h the horizon meets �,

l




= %

�1=4




is the fundamental 
ausal set length, and 
 is a number of order

unity. For ma
ros
opi
 bla
k holes we 
an safely negle
t the se
ond term and


on
lude that the number of links will just be proportional to the area of the

horizon in 
ausal set units, with a 
oeÆ
ient of order unity. From this we


an infer that, if the entropy really does measure the number of 
ausal links,

then l




must be of Plan
kian order, as was anti
ipated a long time ago.

3 On the minimality and maximality 
ondi-

tions

Now we return to the \max/min" 
onditions we introdu
ed in Se
tion 2, in

order to prevent the double 
ounting of 
ausal links to whi
h we attributed

the initially divergent 
hara
ter of our integral for < n >. In (4), these


onditions are the last two in the list. Other possibilities exist, however,

and we know of nothing parti
ularly sa
red about the 
onditions used in (4),

whi
h we sele
ted partly with an eye to the simpli
ity (for evaluation) of the

resulting integral. One must be 
areful not to use something like \y minimal

in J

+

(�)", whi
h would drive <n> to zero in the limit of null �, but this

does not rule out, for example, a 
ondition like \x maximal in J

�

(�)".

Fortunately, the �niteness of the answer | and even its exa
t numeri
al

value | seems to be insensitive to variations in the max/min 
onditions.

Consider, for example, repeating the 
al
ulation of Se
tion 2.2 with the dif-

ferent set of 
onditions illustrated in Figure 3. (We have weakened the �fth

13



y

x

Figure 3: A se
ond variation on the \max/min" theme


ondition to \y minimal in J

+

(H) \ J

+

(�)" and strengthened the fourth to

\x maximal in J

�

(�)".) With this alternative set of 
onditions, the integral

for <n> is modi�ed (be
ause V is modi�ed), but it 
an be shown [5℄ to have

the same asymptoti
 behavior as before, namely

<n> =

�

2

6

+O(1=a) :

Thus, in this 
ase at least, we obtain exa
tly the same numeri
al answer as

in Se
tion 2.

Another feature that our 
ounting must have if it is to yield the horizon

area is that, within reason, the expe
ted number of links should depend only

on the interse
tion H \�, and not on how the surfa
e � is prolonged outside

or (espe
ially) inside the horizon H. For example one should get the same

14
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1

2

Σ

Figure 4: Two 
ontinuations of a hypersurfa
e to the interior region.

answer for both of the 
ontinuations shown in Figure 4. (The 
ase where

the di�eren
e is 
on�ned to the interior bla
k hole region is of parti
ular

signi�
an
e for the entanglement interpretation of horizon entropy, sin
e su
h

a di�eren
e 
annot, by de�nition, in
uen
e the e�e
tive density operator for

the external portion of � (at least to the extent that unitary quantum �eld

theory is a good guide).) From this point of view, those max/min 
onditions

are most satisfa
tory that depend least on 
onditions outside the bla
k hole.

In this sense, the 
ondition used in Se
tion 2 that y be minimal in J

+

(H)

has an advantage over the alternative, \dual" 
ondition that x be maximal

in J

�

(�); for the former, at least in the 
ase of null �, refers only to the

interior region.

4 Summary and Dis
ussion

In Se
tions 2 and 3 we have reported some 
al
ulations, in the 
ontext of


ausal set theory, of the expe
ted number of irredu
ible 
ausal relations

(links) that 
ross the horizon H of a bla
k hole in proximity to a spe
i-

�ed spa
elike or null hypersurfa
e �, as determined by the satisfa
tion of


ertain \max/min" 
onditions. Limiting ourselves to the 
ase of spheri
al

symmetry, we 
onsidered both equilibrium and nonequilibrium examples of

ma
ros
opi
 bla
k holes in both 3+1 and 1+1 dimensions, together with both

null and spa
elike hypersurfa
es. We also 
onsidered variants of the max/min


onditions. In all these 
ases one obtains �nite answers, but we 
omputed

15



exa
t numbers only for null �, and only for the two dimensional redu
tions

of the 
orresponding four dimensional bla
k holes. The expe
ted number of

links was always �

2

=6. Moreover, we saw that the bulk of the links always

resided in 
lose proximity to the horizon, meaning that the result was being


ontrolled by the near horizon geometry. From this we inferred the likeli-

hood of a universal relationship in four dimensions, with the number of links

being proportional to the horizon area, modulo 
orre
tions down by a fa
tor

of l




=R where l




is the fundamental dis
reteness length and R the bla
k hole

size.

7

What seems signi�
ant about these results is not so mu
h the propor-

tionality to horizon area per se. One might have expe
ted as mu
h. However

the 
oeÆ
ient of proportionality might have turned out to be either in�nite

or zero in the limit of large bla
k hole radius (as in fa
t it does if one omits

the max/min 
onditions introdu
ed to prevent \double 
ounting" of links).

Moreover, for the nonequilibrium horizon, the 
oeÆ
ient might have var-

ied with time or it might have di�ered from its equilibrium (S
hwarzs
hild)

value. In the event, none of these things o

urred, at least in the 
ases


he
ked. Rather we found a universal answer whi
h took the same value in

all 
ases where we su

eeded in evaluating it exa
tly. The agreement between

the equilibrium and nonequilibrium 
ases seems espe
ially noteworthy, inas-

mu
h as this is the �rst time, to our knowledge, that su
h an entropy has

been 
omputed for a non-stationary horizon.

The weakness of our result, of 
ourse, is that it remains at a purely kine-

mati
 level: we believe to have found something like the number of \horizon

atoms", whose multipli
ity is the ultimate sour
e of bla
k hole entropy, but

this belief 
annot be substantiated or refuted before we possess a fully quan-

tum dynami
s for 
ausal sets. Short of this, many interesting extensions and


ross-
he
ks of our 
on
lusions 
an still be pursued, however.

Of greatest immedia
y is the need to 
arry out a full 
al
ulation in four-

dimensions. Not only would this provide an important test of our redu
tion to

two dimensions, but it would furnish the 
orre
tion to the two-dimensional

value of �

2

=6, thereby laying the basis for a future determination of the

fundamental length l




. (Comparison of the known entropy with a 
al
ulation

from �rst prin
iples is probably the most reliable way to get a handle on

7

Interestingly, these 
orre
tions are { in 4 dimensions { 
omparable in order of magni-

tude to the inherent

p

n 
u
tuations that one would expe
t in n itself purely for statisti
al

reasons.
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the basi
 parameters of any quantum gravity theory, as entropy, being an

absolute number, should not be subje
t to \renormalization".)

Completing the evaluation of the two dimensional integrals for spa
elike

� is also desirable in order to de
ide whether they indeed give the same

result as for null �.

8

It would also be good to explore further the extent to

whi
h the results we have obtained depend on the details of the max/min


onditions 
hosen (or indeed, whether other 
onditions, not of the max/min

type might possibly o�er a better solution to the \double 
ounting" problem).

The generalization to rotating and deformed bla
k holes is another obvious

dire
tion for further work.

With respe
t to the 
ausal set, there 
an of 
ourse be no horizon as su
h,

only a division of the elements into those whi
h 
an and 
annot 
ommuni
ate

with distant regions. The 
losest one 
an 
ome to the horizon as a null surfa
e

is probably the 
olle
tion of linked pairs we have 
ounted in this paper.

9

But these 
orrespond to a \thi
kened hypersurfa
e" in the 
ontinuum. It

would be interesting to 
ompute the amount of this \kinemati
al thi
kening",

espe
ially as there are hints from a very di�erent dire
tion of a pronoun
ed

\dynami
al thi
kening" of the horizon (possibly of order a

1=3

) resulting from

the in
uen
e of quantum 
u
tuations in �elds propagating near H [8℄.

A further dire
tion for generalization would be the substitution of some

di�erent stru
ture for the links we have 
onsidered in this paper. One su
h

8

In this 
onne
tion, we note that the 
ase of null � is of parti
ular interest for the

\Generalized Se
ond Law" of entropy in
rease. It is diÆ
ult to imagine proving this law

| or even formulating it | without being able to spe
ify in a well de�ned manner the

hypersurfa
e � to whi
h the entropy is being referred. Within a semi
lassi
al spa
etime

with its �xed metri
, this is not a problem, but the semi
lassi
al framework is overly

restri
tive, sin
e it 
annot a

ommodate, for example, su
h a mundane entropy as that due

to the spread in position of the individual members of \gas" of bla
k holes. Fortunately,

re
ourse to a semi
lassi
al spa
etime is unne
essary in the 
ase of a null hypersurfa
e,

sin
e then one 
an spe
ify � by \an
horing it to the environment" (say to the walls of the

proverbial thermodynami
 box), and with this a

omplished, one 
an envisage proving the

se
ond law as sket
hed in [7℄. But no similarly robust te
hnique seems available in the


ase of a spa
elike �.

9

Another possibility might be the minimal layer L of the sub
auset 
orresponding to the

interior region of the bla
k hole. However, L is by de�nition an anti
hain and therefore

more akin to a spa
elike surfa
e than a horizon, whi
h, though not everywhere null, is

ruled by null geodesi
s. More importantly, as one moves along H toward the future, the

elements of L probably be
ome sparse too rapidly to mark out H 
orre
tly. This diÆ
ulty

is even 
learer for the dually de�ned set L

0

of maximal elements of the exterior region,

whi
h probably is empty!
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possibility might be a \triad" of elements, say x, y and z with x and y to the

past of � and z to its future, and with x inside the bla
k hole and y outside

it. The requirement that the triad be \small" in a suitable sense might then

be able to repla
e our max/min 
onditions. In the same spirit one 
ould


onsider inverted triads or even \diamonds" 
ontaining both types of triad

simultaneously. There is however some suggestion that triads of the �rst type

are naturally related to the kind of 
orrelation responsible for entanglement

entropy in a quantum �eld theory framework [9℄.

A �nal remark 
on
erns the �niteness of our integrals in two spa
etime

dimensions. Although this was ne
essary in order that the four dimensional

result s
ale 
orre
tly with area, it 
ould nonetheless seem surprising that the


ounting of two dimensional links remains �nite even in the 
ontinuum limit

where the fundamental length is sent to zero. In this sense, the repla
ement

of 
ontinuous spa
etime by a 
ausal set 
ould appear in two dimensions as

more of a regularization devi
e than something fundamental. We do not

know whether this has any deeper meaning, or whether it might be related

to some of the other spe
ial properties that both quantum �eld theory and

quantum gravity possess in two dimensions (
f. [10℄).

In 
on
luding, we would like to dedi
ate this arti
le to our friend and


olleague, Ja
ob Bekenstein. Not only does Ja
ob's work lie at the origin of

our understanding of bla
k hole entropy and the \generalized se
ond law",

but it also raised expli
itly the theme of missing information whi
h forms the

ba
kdrop to, and inspiration for, the work reported herein.
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