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APPENDIX I

DIFFERENTIAL MANIFOLDS

Topology, Geometry, and Submanifolds

The purpose of this appendix is to provide an introduction
to the mathematical structures used in the thesis, and also to
establish notational conventions. While I recognize that most
readers will be totally familiar with the items discussed, I
have attempted to make the presentation fairly complete for the
benefit of those who do not have a background in topology or
differential geometry. The emphasis is on definitions and an
understanding of the basic concepts. Most results are stated
without proof.

Numerous comprehensible references exist for this material,
but I shall mention here only those monographs that I have found
particularly useful. 'General Topology' by Lipschutz [38] is a
good primer for the basics of point set topology, leading up to
but not including the definition of a manifold. Munkres [39] pro-
vides clear definitions of manifold, differential structure, and

differential manifold, but does not indicate that it is the field
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structure, rather than the topology, of the real numbers which
gives rise to the possibility of defining derivatives. The funda-
mental definition of derivative is contained in Porteous [40]
along with the basics of algebra, topology and a great wealth of
other information that should be of interest to many physicists,
but which cannot be treated here. Guillemin and Pollack, in their
well illustrated text 'Differential Topology'[33] , explore many
aspects of that vaguely defined field. They develop both differ-
ential and integral calculus on manifolds and show how these
relate to the global structure of differential manifolds. The
properties of differentiable maps from one manifold into another
are shown to depend significantly on the global topologies of the
two manifolds.

Differential geometry, considered in its broadest sense as
the mathematics of differentiable fields on manifolds, is perhaps
the branch of modern mathematics most familiar to physicists. An
excellent classical text is 'Ricci Calculus' by Schouten [21],
but I much prefer the more modern treatment and notation of
Kobayashi and Nomizu [41]. Throughout this thesis I will employ
a coordinate free notation which is similar to that used in
reference [41], however the elegant fibre bundle picture which
they develop will not be used here because it would be overkill

for the simple geometries to be considered.
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1. Topology

Topology is the study of sets and their subsets. Let X
be a non-empty set and let Sub X be the class consisting of all
subsets of X . A subset T of Sub X 1is a topology on X iff

T satisfies

(1) g,x €T ;
(ii) for all aA,BE T , ANB ET ;

(iii) for all a, g $CT , UAiG T
/ :

where @ 1is the null set. The elements of T are called the
open sets of the topology. A set X , together with a topology

T on X , is called a topological space, (X,T) . Normally this

will be denoted by X alone, with the topology T assumed to be
known. It is important to recognize that the open subsets of X
may generally be chosen in more than one way, each different
choice giving rise to a different topology on X .

A base for the topology T on X is a subset BCT such

that every open set A &€ T is the union of members of B . An
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open cover or cover for a topological space (X,T) 1is a subset

S of T such that US = X. Every base is a cover, but not every
cover is a base. If for each cover S8 for X a finite subset
S'" of S covers X then X 1is said to be compact.

A topological space X is a Hausdorff space iff for each

pair of distinct points a,b € X there exist open sets A,B € T
such that a € A, b € B, and A(NB =g .

We are often concerned with maps from one topological space
to another. Let (X,T) and (X',T') Dbe topological spaces. A

function f£:X -+ X' is said to be continuous iff the inverse

image of every open set of X' 1is an open set of X , that is, iff
£1a] €T for all a €T .

Two topological spaces X and X' are called homeomorphic or

topologically equivalent if there exists a bijective map £:X » X'
1

such that both f and f -~ are continuous. The map f 1is

called a homeomorphism.

Let g:W » X be a continuous map with domain a subset of
the topological space W and let a € W\dom g (i.e. a is an
element of the complement of dom g in W ). Then g has a
limit b at a if there exists a continuous map f£f:W » X such
that f(a) = b and f(w) = g(w) for all w € domg . If dom g
is a proper subset of W , a 1is an element of the closure of
dom g , and X 1is a Hausdorff space, then b is unique. Porteous

notes that this is one of the most important features of a
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Hausdorff space [40].

If YCX and Ty = (B, A, = ANY for some A € T} then
(Y,TY) is a topological subspace of (X,T) with the induced
topology. Any subspace of a Hausdorff space is a Hausdorff space.

Let X and Y be topological spaces and let W = XxY be
the cartesian product of the sets X and Y . The product
topology induced on W from X and Y consists of all those
subsets of W that can be constructed as the union of sets of
the form AxB where A 1is open in X and B is open in Y .
Unless specified otherwise, the product XxY of two topological
spaces will be assumed to have the product topology.

Until now I have avoided reference to numbers. However, the
number systems with which we are so familiar play an important
role in topology. Porteous [40] starts with the null set and
builds up the natural numbers through a constructive process.

The non-existence of a largest natural number is the
Archimedian Order Axiom: The set w = {0,1,2,...} of natural
numbers is not bounded from above.
Addition, multiplication, and exponentiation are defined in a set
theoretic fashion. Further constructions yield the integers 2
and the rational numbers Q . The real numbers R are then de-
fined to be the elements of an ordered field with the usual oper-
ations of addition and multiplication, containing Q as an
ordered subfield, such that

(Least Upper Bound Axiom): If A is a subset of R bounded
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from above, then A has a least upper bound.
This is equivalent to the statement that the real numbers are
complete, that is, that every Cauchy sequence of real numbers
converges to a point in R .
The topology of R is defined with the use of the open inter-
vals S = {xta < x <b ; x,a,b € R} . Let ACR . A point p € A

is an interior point of A iff p belongs to some open interval

Sp which is contained in A . The set A is open iff each of
its points is an interior point [38]. Note that the topology of
R does not depend explicitly on the operations of addition or
multiplication, but only on the well ordered property of the real
numbers. As is usual, R" will be used to denote the topological
product RxRx...xR with n factors.

A point x € R" may be represented by the ordered n-tuple

1 n)

of its components (x7, ... ,X . If we exploit the field struc-

ture of the real numbers then we may use these components to

. n
define a norm on R :

1] =/ (xhH?2 + ...+ ™2, (1.1)

For any 6>0 the sets {x € R": |x|<s} , {x € R": |x|<6}, and

{x € R": |x]=6} are called respectively the open ball, the closed
ball, and the sphere in Rr" , centred on the origin, with radius

§ . The origin or additive identity of R” need not play such a
fundamental role, however. Instead we can make use of the metric

or distance function :
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a(x,y) = |x -yl (1.2)
which specifies the euclidean distance between any two points
x and y in R" . An open ball with centre x and radius §

is then the set B(x,8) = {y € R : d(x,y)<8} . The class of all

such open balls provides a base for a metric topology Td on the
set R" . For finite dimension n this metric topology coincides
with the usual topology on R". When no particular point of R"
is singled out as the origin, the space (Rn,Td) is called an

affine space and denoted by A .

One more word must be added to our mathematical vocabulary
before we can define manifold. A set X 1is said to be countable
iff there exists an injective map from X into « , that is, iff
the natural numbers may be used to uniquely label the elements

of X .

A topological manifold M is a Hausdorff space with a count-

able basis, satisfying the following condition: There is a
number n € w such that each point of M has a neighbourhood
homeomorphic with an open set of R” . The number n is the
dimension of M . If A is an open proper subset of M then

M\A is a manifold with boundary. The set A\A , where A is

the closure of A in M , is the common boundary of A and

M\A and is an (n-1)-dimensional manifold. The notation &M is
commonly used to denote the boundary of a manifold-with-boundary
M . For any M , 33M =g .

The spaces A and 3A are examples respectively of n and
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(n-1)~dimensional submanifolds of M . An m-dimensional

submanifold M' of a manifold M , with Osmgn , is a topological

subspace of M which (with the induced topology) is an m-dimen-
sional manifold. A submanifold of dimension zero has the discrete
topology, and consists of isolated points in M .

The product space MxM' of two manifolds M and M' is
a manifold with dim(MxM') = dim(M) + dim(M"') .

It is possible for a manifold to be made up of several dis-
joint pieces. A topological space (manifold) is connected iff it
is not the union of two non-empty disjoint open sets. Unless
specified otherwise a manifold will be assumed to be connected.

Every connected manifold M is metrizable, that is, M ad-

mits a distance function d:MxM > R which is compatible with the

topology of M and which satisfies, for all x,y,z € M

(i) d(x,y) 0 and d(x,x) =0 ; )

W

(ii) d(x,y) d(y,x) ;
v (1.3)

(iii) d(x,2z) d(x,y) + d(y,z) ;

IN

(iv) If x #y then d(x,y) > 0 . J
The open balls defined with the use of d provide a base for the
topology of M . However the topology of M does not uniquely
determine d , nor is every distance function necessarily com-
patible with the topology of M . This will be elaborated in the
next section.

Let M be an n-dimensional manifold with n > 1 . An open

n-cell in M is an n-dimensional submanifold of M which is
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homeomorphic to an open ball in R" . A closed n-cell is a sub-

space S CM which is homeomorphic to a closed ball in R™ . The

boundary 23S of a closed n-cell S 1is an (n-1)-sphere. 1In gen-

eral, an (n-1)-sphere Sn_l is a manifold homeomorphic with a

sphere in R" .

All manifolds of a given dimension are locally the same: if
M is an n-dimensional manifold, then every point x €M is con-
tained in the interior of some closed n-cell in M . When
considered in their entirety, however, two manifolds of the same
dimension can be very different. It is thus the global structure
of M which serves to differentiate it from other n-dimensional
manifolds. This is best illustrated with specific examples in
one and two dimensions:

(i) There are only two distinct (connected) l-dimensional
manifolds (without boundary). These are the line Al = R and the
circle or l-sphere S1 (Figure 1.1). They are distinguished by
the fact that S1 is compact while Al is not. If we choose a
point x € Sl and a closed l-cell C<:Sl; which contains x in
its interior, then Sl\c is an open l-cell which is homeomorphic
with Al . The line can thus be considered as a l-sphere which
has had a closed 1l-cell removed or "cut out".

(ii) There is a countable infinity of distinct 2-manifolds.
They fall into two natural classes, orientable and non-orientable,

and may all be constructed from the 2-sphere 82 by a process of

"cutting and pasting" [42]. Although it is technically a purely
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Figure 1.1 The line and circle are, up to homeomorphism, the

only l-dimensional manifolds.

Figure 1.2 A sphere with (at least) six handles.
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M

Figure 1.3 A crosscap is formed by removing from M the

interior of the 2-cell, C , and then identifying opposite

points on the resulting boundary.

105
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topological concept we shall delay the definition of orientability
until the next section, relying for the time being on the intuitive
notion that an ofientable surface has two sides (e.g. the inside
and outside of the unit sphere in R3 ) while a non-orientable sur-
face has only one side. Examples of compact orientable 2-manifolds
are the sphere 82 , the torus Slxsl which may also be considered
as a sphere with one handle, and more generally a surface of genus

h or sphere with h handles (Figure 1.2). The simplest compact

non-orientable 2-manifold is a sphere with one crosscap. Being
the non-orientable analogue of a handle, a crosscap is constructed
by removing from a 2-dimensional manifold M an open 2-cell C
and then identifying (with the use of an orientation reversing
homeomorphism f£:3C » 3C ) "opposite" points of the resulting cir-
cular boundary (Figure 1.3). The non-orientable analogue of a

sphere with h handles is a sphere with g crosscaps. A sphere

with 2 crosscaps is topologically equivalent to the well known
Klein bottle. Non-compact 2-manifolds may be constructed from a
compact 2-manifold M by removing from M any number r of
closed 2-cells. The resulting manifold is then said to have r
contours. The general result which emerges is that any 2-dimen-
sional manifold (without boundary) is characterized topologically
by its orientability class, its contour number r , and its number
of handles or crosscaps, h or q . The Moebius band, for example,

is a non-orientable surface with one contour and one crosscap.
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For manifolds of dimension greater than two the problem of
analyzing the global structure becomes much more complex. The
vast field of algebraic topology [42],[43] provides general pro-
cedures for describing some aspects of the global structure of a
given manifold M , but no scheme is known for uniquely identifying
each distinct manifold. It is thought, in fact, that for n34 it
is impossible to find a classification scheme which will uniquely
label each and every n-dimensional manifold (up to homeomorphism)
[32] . The 3-dimensional problem, on the other hand, may be solv-
able. Much progress has been made toward a partial solution and

I believe that some of the results may have a direct and profound

application in physics. This is discussed in detail in
Chapter 4.
2. Differential Manifolds

We return now to the local properties of manifolds. Let U
be an open set of an n-dimensional manifold M and let ¢:U ~» R
be a homeomorphism of U onto an open set in R™ . The pair (U,¢)
is called a chart on M and the n component functions of ¢

determine a local coordinate system in U . An atlas of M is a

family of charts (Ui,¢i) on M such that the open sets Ui
cover M .
A mapping f of an open set of R” into R is said to be
1 m

of class c¥ , r €w , if its m component functions f~, ... ,f

are r times continuously differentiable. If £ 1is real analytic
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then it is said to be of class c“. By C0 we mean that £ is
continuous.

A differential structure D of class CY on an n-manifold M

is an atlas (Ui,¢i) on M such that
(1) If (Ui,¢i) and (Uj,¢j) belong to D , then
-1 n
FEFRE ¢j(UiﬂUj) + R (2.1)

is differentiable of class Cr; and

(ii) The atlas D is maximal with respect to property (i);

i.e., if any chart not in D is adjoined to 0 , then (i) fails.
The manifold M together with the differential structure D is

called an n-dimensional differential manifold of class Cr. A

differential manifold of class C is called a smooth manifold.
Although it does not appear explicitly, we have exploited for the
first time the full field structure of the real numbers in the
definition of a differential structure.

Let M be of class ¢%, r31 , and let x € Uif\Uj . Denote
by aij(x) the nxn-matrix of first partial derivatives of the
functions (2.1) evaluated at ¢j(x) ;, i.e. the Jacobian matrix of
(2.1). The atlas D 1is called oriented if the determinant of
aij(x) is positive for all i,j and x € Uif\Uj . If D, D'
are two distinct oriented atlases of M then the Jacobian matrices
of ¢i¢;l have determinants which, for all 1i,j and x E Uif\Uj ’

are either always positive or always negative. Accordingly, the

orientations of P and V' are said to be either the same or
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opposite. The class of all atlases which have the same orientation

as D 1is called an orientation of M . If M admits an oriented

atlas then it is orientable, and has exactly two orientations. If

no oriented atlas exists for M then M is non-orientable.

Given two differential manifolds M and M' of dimensions
n and n' and of class Cr, a map f:M > M' 1is said to be of
class Ck, k¢r , if for all i,j the map

ve,—1
01€67

. u.NEtw) - &Y (2.2)
J 3 1

is of class cX. The rank of £ at x € Uj is defined to be the
rank of the Jacobian matrix of the map (2.2) at ¢j(x). If

rank £ = n at each point x E M , f is said to be an immersion.
The map £ is proper if the preimage of every compact set in M'
is compact in M . An immersion that is injective and proper is

called an embedding. If £ is a homeomorphism of M and M'

and an immersion then it is called a diffeomorphism. In this case

M and M' are said to be diffeomorphic. An embedding f:M > M'

maps M diffeomorphically onto a submanifold of M' .

Not every manifold admits a differential structure [44], nor
do two different differential structures on the same manifold
always give rise to diffeomorphic differential manifolds. However,
if dim M ¢ 3 or if M is homeomorphic to r™ , n#¥4 , then M
admits a differential structure [32] and all differéntial manifolds

(M,D) are diffeomorphic [39].
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Two important theorems [39],[45] allow us to restrict our
attention to differential manifolds of class C  and to smooth ™)
maps between Cc” manifolds. The first states that if M and M'
are C~ manifolds and f:M - M’ is a Cl immersion, embedding, or
diffeomorphism, then f may be approximated by a c” immersion,
embedding, or diffeomorphism, respectively. The second theorem
states that every differential structure of class Cl on a manifold
M contains a C~ structure. From now on, unless indicated other-
wise by the context, the term manifold will be taken to mean smooth
differential manifold, and all maps between manifolds will be
assumed to be smooth.

Differential manifolds are of special interest to physicists
because they serve as the substrate for all of the geometrical
structures with which we deal. The simplest such structure is a

function or scalar field £f:M - R on the manifold M . We shall

denote the algebra of all such (smooth) functions by F(M). A

differentiable curve, or simply curve, in M 1is a mapping of a

closed interval [a,b]CR into M . If x(t), t 6 [a,b] is a
curve in M , then the vector tangent to x(t) at p=x(t0) is

the derivative operator ip defined by

>

X, (df (x(t))/at) for all £ € F(M) . (2.3)
0

The set of all vectors that can be constructed at p 1is, in a

natural way, an n-dimensional vector space (where n = dim M )

called the tangent space to M at p , and is denoted by Tp(M).
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If (U,9¢) E D is a chart on M such that p € U , and the
quantities ui = ¢i(x), i=l,...,n, are the local coordinates of a
point x , then the curve x(t) has the coordinate representation
xi(t) = ¢i(x(t)) . Within this coordinate picture we find that

(af (x(t) /at) = g(af/aui)p-(dxi(t)/dt)to , (2.4)

so that the vector ip may be represented by the differential

operator
3 i i
X = dx™ (t) /dt 3 /au . 2.5
p = Jl@d(m/an, ¢ /auh, (2.5)
The partial derivative operators (3 /Bul)p, or simply (ai)p ’

are linearly independent vectors at p and constitute a basis,

called a coordinate basis, for _Tp(M) . The numbers

i_ i
Xp = (dx (t)/dt)to (2.6)

are called the components of the vector X in the coordinate basis.

Although it is always possible to represent a vector in this fashion
it is certainly not necessary, nor even desirable in many situ-

ations. In that which follows, a coordinate free formalism will

be used almost exclusively so that the basic geometrical concepts
being investigated will remain in £he fore.

A vector field X on M is an assignment of a vector X

to each point p of M . Acting pointwise on a function £ € F(M),

X generates a new function Xf defined by

(Xf) (p) = %pf ) (2.7)
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If Xf is a smooth function on M for each f € T(M) then X
is a smooth vector field. Just as we are restricting our attention
to smooth maps we shall consider only smooth vector fields, and
we shall use the terms vector field and smooth vector field inter-
changeably. The (infinite dimensional) space of all vector fields
on M will be denoted by T(M) .

Let T;(M) denote the vector space dual to Tp(M) , that is
the space of all linear maps wp:Tp(M) >R . A l-form w on M
is an assignment to each point p € M of an element of T;(M) .
If X € T(M) and w 1is a 1l-form on M , then g(ﬁ) is the

function defined by

0 (p) = w (X)) p€ M . (2.8)

If g(i) € FM) for all X € T(M), then w is a ¢” 1-form (differ-
ential form of degree 1l). As usual, we shall consider only smooth
1-forms, denoting the space of all c” 1-forms by ’T&(M) . The
1-form ggi , 1 E {1,...,n}, dual to the coordinate basis vector

field 31 in the neighbourhood UCM is defined by

ggl(gj) = a; , for all j € {1,...,n} (2.9)
where 63 is the Kronecker § function. Accordingly, dul, cee 4

P
coordinate (basis) l-forms. In the neighbourhood U , any

QE? are linearly independent in Tg(M) and are called the

w € T{(M) may always be written in the form

w = Ju,du" (2.10)
i
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with the components w, functions in 7YM).

The second dual V** of a finite dimensional vector space
V is naturally isomorphic to V . Thus, just as a l-form w maps
T(M) into F(M) , we may think of a vector field X as a map
from 7&(M) into F(M) . As a natural generalization of this
picture we define a tensor Tp of type (r,s) at p € M to be
an (r+s)-linear map from TE(M)X oo XTg(M)XTp(M)X.,. XTp(M) into
the real numbers, where TE(M) appears r times and Tp(M)
appears s times. The space of all such maps is an n"tS_qimen-

sional vector space (TZ)p(M) called the tensor space of type

(r,s) at p . A (smooth) tensor field T of type (r,s) on M is

an assignment, to each point p 6 M , of a tensor Tp of type

(r,s) such that the function T(gl, .o Qr’il' o ,§s)‘ given by

‘ > ->
T{wgr ove s0p s Xy, oo X)) (P)
-> >
= Tp(ﬂlp’ ,_w_rp,le, ,xsp) (2.11)
: : > >
is in F(M) for all Wyr ee ,9{,6 7&(M) and Xy, ... X € Ty .

The space of all such tensor fields on M is denoted ’TE(M) .
The components of T relative to the coordinate bases gi and

ggl defined on U are the functions

T =Tt a3, 3 (2.12)

where i,eee,jisk,eee,1 =1,...,n . Tensors of type (r,0) are said

to be contravariant of degree r and tensors of type (0,s) are said

to be covariant of degree s . A tensor of type (r,s) (r,s # 0)
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is mixed of degree (r+s).

Although the definition of a tensor given above is perhaps
the simplest, it is not the only way in which we can think of
tensors. It is easy to see that a tensor Tp of type (xr,s) may
also be thought of as a (u+v)-linear map (with wugr , vgs) from
TE(M) X oo XTE(M) T (M)x ... xT (M) into (ng‘;)p(M) , where
TE(M) now appears u times and Tp(M) appears Vv times. With

this interpretation, the tensor field T , now written T' , has

the explicit action

> >
T'(El,...,(_u_u,Xl,...,XV) =

= I L Tlepseeesmedut,ee,dud X0 X LB L))
i...J k...1

. Sig...®§j®g33@...®ggl (2.13)

where the sums range from 1 to n and the quantities

k...1 _ 2 e k 1
). = (ai®...®aj®§g ®...8du )p ' (2.14)

(E, .
ice.] P

with (r-u) lower and (s-v) upper indices, are the basis vectors

for (T- %) (M) defined by

s-v'p
k.o..1 1! N RN >
N (du™ ... du? 8,0, 00)
., .
B 6; T '53 ‘5]12 'Gi- (2.15)

The tensor product @ wused in (2.13) is an associative bi-

linear product used to create, from two given tensors of types

(r,s) and (u,v), a new tensor of type (r+u,s+v). For example,
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if 6 and w are two l-forms on M , then 68w is the tensor

field of type (0,2) defined by

88w (T,¥) = 8 (@) (™) . (2.16)

The exterior or wedge product of 6 and « is the 2-form

8Aw = ( 68w - w®8 ) ’ (2.17)

which is an antisymmetric covariant tensor field of degree 2. If

M is an n-manifold, then a p-form, psn , on M 1is a completely
antisymmetric covariant tensor field of degree p. In order to
generalize the wedge product to products of p- and g-forms (p+g < n)
we require that A be associative and bilinear, and we define the
p-form wqA .../\(_u__p constructed from p 1l-forms to be the tensor

that satisfies
> > > i
oA eee Aa (Vs eee V) = Get \]Qi(vj)l] (2.18)

for all ?l, “en ,ﬁp € Ty . 1If 6 1is a p-form and ¢ a g-form,

then it follows that

oA = (-1)PT ga0 . (2.19)

If p+qg > n then 6A¢ = 0 . By convention, a function £ € Fw)
is a O-form and fAg = f-8 .
The primary use of differential forms lies in the theory of

integration on manifolds. Let M be an n-manifold with differ-

ential structure 7D ; let {(UI,¢I)} be a subset of ? such
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that {UI} is a locally finite cover for M ; and let {pa} be
a partition of unity on M subordinate to the cover {UI} [33]-

If w is an n-form on M then for any given «

w, =P e (2.20)

is an n-form on M which is non-zero only in some neighbourhood
U € {U;} . Denoting by u* , i=1,...,n, the local coordinates

induced in this neighbourhood by the map $5 + one can guickly

verify that on UJ

_ 1 n
w, = £,°duA ... Adu (2.21)

for some unique fa € 7RUJ) . The integral of w, on M is
then defined to be
— -1 Jn
Ju = [ £ (¢ (x))d x . (2.22)
J - J
where the integral on the right hand side is the usual integral in
Euclidean n-space. Noting that Zga = w , we can now define the
a

integral of w over M to be

&g =7 &ﬂa . (2.23)
a

If w has compact support then this sum will converge and will be
independent of the choice of cover {UI} or the partition of
unlty {pa} : - . . N . . - P

A very useful generalization of the classical theorems of

Stokes and Gauss to an arbitrary manifold M may also be derived.
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But before stating (without proof) this generalized Stokes' theorem

we must define the exterior derivative operator d . If M is

an n-dimensional manifold and f € F(M) , then we define the 1-form

df = df by
df (V) = Vf for all V € T(M) . (2.24)

More generally, if w is a p-form on M , then the exterior deriv-
ative dw of w is a (p+l)-form that is uniquely determined by

the following properties of d [33]:

(i) d(ey, + 8,) =do, + de, ; (2.25)
(i1)  d(eAg) = (@ns + (-LPoAdy (2.26)
(iii) d(de) = 0 ; (2.27)

which must hold for all p-forms 8,8,,8, and g-forms ¢ on M

In particular, g(ggl) = 0 , where ggl are the coordinate l-forms
in some neighbourhood U . Thus, when « is expanded in the form
il i
w = ) Wy ; 4w A ...Adu P (2.28)
1l<...<1p 1" 7p

its exterior derivative is just

i i
duw I dlwy . Adu A L..adu P (2.29)
P

Now let w be an (n-1l)-form on M and let M' be an
n-dimensional submanifold of M with boundary &M' . A curve in

3M' is, in a natural way, also a curve in M ; so we may always
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think of a vector field V € T(aM') as the restriction to oM’

of some V € T(M) . Similarly, the (n-l)-form & on M restricts
to an (n-l)-form, also denoted by w , on 3M'. Since 3M' 1is an
(n-1) -dimensional manifold, the integral of « over this boundary
may be constructed as in (2.23). If M' is compact and oriented
and 9M' 1is assigned the boundary orientation [33], then the

generalized Stokes' theorem may be concisely expressed in the form

& w = & dw . (2.30)
a [ ] 1

The exterior derivative operator d is intrinsic to the
manifold M on which it is defined. It acts only on differential
forms, raising the degree of a p-form to (p+l). 1In view of (2.24),
it may be considered as a generalization of the gradient operator
of vector calculus. Also intrinsic to each manifold is a second

kind of differential operator + called the Lie derivative. If

X and ¥ are vector fields on M , then the Lie derivative of

Y along X is the vector field £§§ defined by

(£§§)f = [X,Y]f = X(¥£) - Y (Xf) (2.31)

for all f € F(M) . The Lie derivative of a function f along
X is defined to be the function

byf = XE (2.32)

and if w 1is a l-form, then £§ﬂ is the l1-form which satisfies

(t30) () = X(u (V) - w (£3V) (2.33)
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for all V € T(M) . By requiring that + satisfy Leibniz' rule
for the derivative of a product, we can define the Lie derivative
of an arbitrary tensor field. For example, if T is a tensor

field of type (1,1), then £§T is defined by
BT (w, V) = X(T(w, V) = Tlege,V) - T(a,t3¥) (2.34)

for all w € T;(M) and V€ Ty .
One more geometric structure deserves discussion here. A

Riemannian metric on M is a (smooth) tensor field g of type

(0,2) which is symmetric and positive definite. That is,

(9(T,¥)) (x) = (g(¥,0)) (x) > 0 (2.35)
for all U,V € TM) and x € M, and (9@, ")) (x) = 0 only if
ﬁx = 0 or %x = 0 . Every differential manifold admits a Riemann-

ian metric [45], and any Riemannian metric on M may be used to

construct a distance function compatible with the topology of M .

Let a and b be two points in M and let x(t) be a curve

such that x(ta) a , x(tb) = Db , and ta < tb . Then, if g is
a Riemannian metric on M , the length of the curve x(t) between

a and b is

tb S ) By
l(a,b) [x] = [.° Yg(X(t),X(t)) dt (2.36)
a
where i(t) is the vector tangent to the curve at x(t) (defined
as in equation (2.5)). Each such curve joining a and b has a

well defined length which is greater than zero if a and b are
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distinct. The metric distance between a and b is the least

upper bound of the lengths of all smooth curves connecting a
and b
d(a,b) = lub (1l(a,b) [x]) (2.37)
[x]
The distance function satisfies the conditions (1.3), and the open
balls defined with the use of d provide a base for the topology
of M . Each curve x(t) joining a and b such that
l(a,b) [x] = d(a,b) 1is called a geodesic of the metric g on M .
If we relax the condition that g be a smooth tensor field,
allowing it to be divergent at some point x E M , then we may
still be able to define a distance function és in (2.37), but d
need no longer be compatible with the topology of M . If g
fails to be positive definite, but is still symmetric and non-
singular , then it is called a pseudo-Riemannian metric. In such
a case the distance function d ceases to be well defined, and

g may no longer be used to generate the open sets of M .

3. Affine and Riemannian Geometry

Let M be an n-manifold and let ﬁ,? € T(M) be any two
vector fields. The Lie derivative iﬁﬁ is, in a natural way, also
a vector field on M . However, this derivative cannot be con-
sidered as a derivative of V in the usual sense, since (when
written in a coordinate representation) it depends on the deriv-

atives of the components of U as well as on the components
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themselves. In fact
v, (3.1)

so that U and V are really on an equal footing. In order to
construct derivatives of V more akin to the directional deriv-
atives of vectors in Euclidean space, we must define on M a new

geometric structure V called a covariant derivative. We define

vV such that for any U,V,W € T(M) and £ € F(M) , Vﬁ? € T(M) and

Vo W o= VaW + VoW )
(T +Vv)" U0 v ’
Va(V + W) = V2V + V=W
U Ty U d
r (3.2)
> ->
vfﬁv = fV§V ’
> > _ > >
v (EV) = (UE)V + £v3V . J

From V we can construct two important tensors: a vector-valued

2-form © called the torsion, which is defined by

0 (B, ¥) = vV - v5l - [0,V) ; (3.3)

and the curvature tensor R , which is of type (1,3) and has the

action

=

RO, VW = v (3.4)

The operator (R(ﬁ,%))x , X E M , is a linear transformation of

TX(M) . It is antisymmetric,



Ap. I 122

R(U,V) = -R(V,D) , (3.5)

and its trace is a symmetric tensor S called the Ricci tensor:

> >

S(V,W) (x) = Trace(U_ > (R(T,NW) ) . (3.6)
The curvature satisfies the cyclic Bianchi identity,

R(T,NW + RW,HY + REY,MT = vy, + v20(T,7)

+ V2R (W,0) - o(,0(V,W) - 0(W,0(3,N)) - 0(V,0W@,T)) , (3.7)

which follows directly from the Jacobi identity

[[0,V]1,W] + [[W,01,V1 + [[V,W],0] =0 . (3.8)

By setting the covariant derivative of a function equal to

its ordinary derivative:
-5
Vﬁf = Uf ’ (3.9)

and requiring that V satisfy Leibniz' rule for the derivative
of a product, we can define the covariant derivative of an arbi-
trary tensor field. If w is a l-form and T a tensor field of

type (1,1), then the covariant analogues of (2.33) and (2.34) are

Ve () = Tw@) - wwy®h (3.10)
VT (w, V) = B(Tw,V) - T(Vgw. V) = Tlo,93V) . (3.11)

Bianchi's second identity,

> o> > o e~
V?JR(V,W) + V—VGR(U,V) + v%R(W,U)

|
o =

+ R(V,0(W,0)) + )) (3.12)
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is obtained by noting that

1]
<]
b
o
<
=
X

vﬁR(?z,Vq)i - R(vﬁ\?,w’)?c - R(\‘i,vﬁﬁ)i

expanding R in terms of the covariant derivative, and making use
of (3.8) and the tensorial nature of the torsion.
In any coordinate neighbourhood UCM, with local coordinates
ui, the action of V is completely determined by the functions
i

ij , defined by

i _ i >
ij = du (ngak) . (3.13)

These are called the components of the affine connection T asso-
ciated with V , the name reflecting the fact that v allows the
comparison of vectors in the affine tangent spaces of distinct
points along a curve. Let x(t) , t € R, be a curve in M and

>

let § be a vector field on M such that Xx(t )
0

t0 » the tangent vector to the curve at x(to) . A vector field

is, for each

V € T(M) is said to be parallel along the curve x(t) Aif

(V§V)x(t) = f(t)-VX(t) (3.14)

for some function f:R + R and for each t € R . If the vector
field X is itself parallel along the curve x(t) , then the
curve is called a path of the affine.connection ' « A diffeo-

morphism s:R > R may be used to reparameterize the points of
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x(t) , yielding the new curve
x'(t) = x(s(t)) . (3.15)

Moreover, if x(t) is a path of T , then s may always be

chosen so that

bd

(v

FiX") =0 for all t € R , (3.16)

x'(t)

where X' bears the same relation to x'(t) as X bears to x(t).

The path x'(t) 1is then called a geodesic of V , and the parameter

t 1is called an affine parameter for the geodesic.

Now let g be a Riemannian or pseudo-Riemannian metric on M .

The covariant derivative V 1is said to be metrical if, for all

U,v, W€ Ty ,
vﬁg(ﬁ,ﬁ) =0 , (3.17)

or, more simply, Vg = 0 . If V is metrical, then the norm
g(ix(t)’ix(t)) of the tangent vector to a geodesic x(t) is
independent of t . The length (as defined in (2.36)) of the seg-
ment of x(t) between x(ta) and x(tb) is thus directly pro-
portional to the affine length (tb - ta) . In the Riemannian
case this will always be positive, but if g 1is not positive-
definite then there will also exist null geodesics, which have

length zero, and time-like geodesics, whose lengths are pure

imaginary.
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A metrical covariant derivative which has vanishing torsion:

vaV - val = [T,V , (3.18)

U v

is called a Riemannian covariant derivative. Each metric g on

M  uniquely determines a Riemannian covariant derivative Vv on M,
and from now on it is this covariant derivative with which we shall
deal. The manifold M , together with g and Vv , is called a

(pseudo-)Riemannian manifold. The Riemann curvature tensor of

M has, in addition to (3.5) and (3.7) , the symmetries
g X, R(T, V)W) = -g(W,R(T, NI , (3.19)
g X, R(T, VW) = g(F,RW, X)) (3.20)

Since g is non-degenerate, it is possible to find, in a neigh-
bourhood Ux of each point x E M , a set of vector fields Ei ’

i=1,...,n, which are orthogonal,

g(Ki,ﬁj) =0 for i # 3 , (3.21)

and which are normalized to plus or minus one,

g(ﬂi,ﬁi) = e, = %l . (3.22)

The sum o = Zei is the signature of the metric g and is an in-
i
variant quantity. In terms of the Ki , the Ricci tensor of V

may be written

s (G,V) = Zeig(ﬁi,R(Ki,ﬁ)§) } (3.23)
1
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It satisfies the contracted form,

>
geivﬁiS(hi,G) LVS , (3.24)

of the Bianchi identity (3.12), where S on the right hand side

is the Ricci scalar,

s = Je;S(R,,h,) . (3.25)
For any metrical connection T the Ricci tensor is symmetric:

s(U,¥) = s(V,0) ) (3.26)

4, Submanifold Geometry

Of especial importance in the physical discussions of chapters
2 and 3 is the relationship between the geometry of a (pseudo-)
Riemannian manifold and that of its submanifolds. Let S and M
be manifolds of dimensions n and (n+p) , respectively, and let
e:8 > M be an embedding. By identifying S with its image e(S)
in M , one can immediately see that e induces, for each x € S ,
an injective map dex:TX(S) - Te(x)(M) whose co-domain is the

subspace Tg(x)(M) of T (M) consisting of those vectors which

e (x)
are tangent to curves in e(S) . The image of a vector field
v € T(S) is denoted e*3 , and is an assignment to each e(x) € e(S)
of a vector in Tg(x)(M) . Such a vector field is said to be

parallel to the submanifold.

Now let M have defined on it a metric g with Riemannian
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covariant derivative V . The pullback a = e*g of g onto S

is the symmetric tensor field defined by
g@,V) (%) = gle,l, e, (e(x)) (4.1)

for all x € S and all u,v € T(S) . If g is not positive
definite, then 3 need not be positive definite, nor even a metric
on S . However, we shall consider here only those embeddings e
for which 3 is a Riemannian metric.

A general vector field V on e(S) 1is a smooth assignment
of a vector §e(x) € Te(x)(M) to each point e(x). If each §e

(x)

is in Tg(x)(M) , then V is a parallel vector field. (Note that

this has nothing to do with "parallel along a curve".) On the

other hand, a perpendicular vector field v , 1is a vector field

on e(S) such that
g(V,0) (e(x)) = 0 (4.2)

for all x € $ and all parallel vector fields 4 . The space of
all vector fields on e(S) will be denoted by 7;(3) , the space
of parallel vector fields by ‘Tg(S) » and the space of perpendic-
ular vector fields by 'T;(S) . For convenience, the distinction
between v € T(S) and e*315‘72<3) will be dropped.

It is always possible to choose, in some neighbourhood
U C e(S) of each point e(x) of the submanifold, a set Ki ,

i=1,...,n , of orthonormal vector fields in ‘Tg(S)

g(ﬁi,ﬁj) = 644 , (4.3)
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and a corresponding set Ku r vw=1,...,p , of orthogonal unit

vectors in 'T;(S) :

> >
g(nu,nv) = Eusuv = isuv . (4.4)

The projection operator 1 defined, on each such neighbourhood U ,

by

T(V) = Zg(ﬁ,ﬁi)ﬁi (4.5)
1

_ ‘ N _
for all V e”Te(S) +may then be used to project out the parallel

part v = H(%) of the field V . Similarly, the perpendicular

>4 _ =

part of V is V v -yl = Zeug(§,3u)3u . The metric g can
u
now be redefined by setting

> o>

(@, V) = g ,n(¥)) , (4.6)

so that its arguments U and V need no longer be parallel
vector fields.
For all 3,% G‘Tg(S) » the vector field V33 may always be

written in the form

> o> > -
Vv = Vov o+ a(u,v) (4.7)
where %33 € Tg(S) and o (u,v) € T;(S) . It is easy to check
that V satisfies the conditions (3.2) for a covariant derivative.

") ' . .
Moreover, V has vanishing torsion,

333 - V>0 = [Q,V] , (4.8)
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because V has vanishing torsion: If 1,V € TQ(S) , then
[U,v] = V¥ - ¥4 + o (@,9) - (¥,0) (4.9)

will also be a parallel vector field; but this implies that

«(U,v) = a(v,0) , (4.10)
reducing (4.9) to (4.8) . Finally, vV is metrical, and hence

Riemannian, since

UG (V, W) = Gl(g(V,w))

= g(V=V,w) + g(v,V+w)
u u

= S(eaz,a) + 8(3,%3%) (4.11)

for all &, v,w € T)(s) .

The operator o defined by (4.7) is called the second funda-

mental form of S for the embedding e . It is linear in its

first argument since vf33 = fvE3 , and the symmetry condition
(4.10) indicates that o must also be linear in the second argu-

ment. In analogy with 3 ; we set
a(U,V) = a(n(D),n(V)) (4.12)

so that o is a tensorial map from 7;(S)X7;(S) into 'T;(S) .
Making use of the unit vector fields Eu ' a(ﬁ,%)vmay be expanded

in the form

a(U,V) = ZK“(%,?)EU . (4.13)
u
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The geometric objects K" introduced here are p real-valued

symmetric tensor fields on e(S) , called the extrinsic curvatures

of the submanifold in the directions Eu .

If E = Zg“ﬁu is a perpendicular vector field and 3,3 E‘TL(S),
U
then

g(v,73E) = W(g(V,?)) - g(va¥,d)

~g (o (U,Vv) ,£)

= —ZeuKu @, e , (4.14a)
i
and
- > > -> > - >
g(nu,VGE) = u(g(nu,a)) - g(VEnu,s)
= guﬁg“ - zgvg(VaEu,Ev) . (4.14Db)
v

Equations (4.7) and (4.14) are known respectively as the formulas

of Gauss and Weingarten [41]. If e(S) is a hypersurface of M ,

that is, if p = 1 , then there is only one unit normal vector
field n , and one extrinsic curvature K . In this case, which
is the only case that we shall consider from now on, the last term
in (4.14b) vanishes, because g(vaﬁ,ﬁ) =0 .

The hypersurface curvature X is defined to have the action

sl N A VI m+m++ _ N >

R(3,V)w = Vavow VaVow %[u,v]w (4.15)
for all u,v,w € 7&(3) , and to satisfy

R(U,NW = n®@m@,n ) n@)) . (4.16)

It has the usual symmetries (3.5) , (3.7) , (3.19), and (3.20) and
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satisfies the hypersurface analogue,

VR (v,w) + V-K(Q,¥) + V=Rw,d) = 0 , (4.17)

u W v
of the differential identity (3.12). The Ricci tensor of Vo ois
defined by

8@,V = J9, KA, DY) , (4.18)

i

and the Ricci scalar is

n > o

= 4.
g gé(hi,hi) . (4.19)

Any tensor which is left invariant by 1 , as are R and § ; 1s

called a hypersurface tensor field. Although in many cases, such

as K , the tilde will be omitted, a superscript tilde indicates
that the field under consideration is a hypersurface field.
The curvature R of V is related to the hypersurface curv-

ature and the extrinsic curvature through (4.7) . For all

wv,w € Ths)

> > > > - >
R(u,v)w = Va>Vaw - VaVaw = V > > W
u'v v'u [u,v]
= v (VoW + R(V,WR) - va(¥al + K@&,W7)
= V2 (Vow V,wW)n S (Vaw u,w)n
(3,91 u,v],w)n
= R(4,V)w + eJIK(@WKEV,R) - K(V,WKEG,B) IR,

1

+ {Vor(V, W) - ¥or(@,w) }n , (4.20)
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and, as a result of the symmetry (3.19),

) = VoR(E,R,) I, X (4.21)

1

R(G, V)N = -eJ{V2K(V,R
i

Equation (4,20) is equivalent to the classical equations of

Gauss and Codazzi [41].



