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CHAPTER 4

THE TOPOLOGICAL WORLD

1. Gravity in a Quantum World

Classical concepts are adequate for the description and
understanding of all observed features of gravitation. However,
it is firmly established that the behaviour of matter in the real
world can be fully understood only within the context of gquantum
theory. Material phenomena that can be effectively described
with the use of classical (as opposed to guantum) variables arise
as a consequence of the gquantum behaviour of large systems, and
are only manifested in macroscopic systems. Since general rela-
tivity, as it was formulated by Einstein and as I have presented
it above, couples the space-time geometry to classical descriptors
of matter, it is reasonable to conclude that GR is only valid f
when macroscopic (classical) systems are being investigated.

This limitation of GR has long been recognized, and many
attempts have been made to remove it by constructing new theories
that are valid in the quantum domain and which reduce to GR in
the classical limit. The most common line of attack is to
quantize the space-time metric much as one would any other field.
[23], however, quantized GR has been shown to be non-renormaliz-
able [24] and it seems unlikely that renormalizability can be
restored within a model that has the correct classical behaviour

[25].
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An alternative "semi-classical" approach was proposed by
Mgller [10]. He suggested that, rather than quantizing the
gravitational field, it might be more appropriate to continue
to think of it as a c-number field, with the expectation value

of the quantum stress—-energy tensor as its source:
G(U,V) = 8 <T0p(‘6,\7)> . (1.1)

These equations are to be solved self-consistently, with the
quantum fields that contribute to the stress-energy being defined
"on the curved space-time that they determine. The major diffi-
culty with the coupling (1l.1) is that the simple normal ordering
procedure used in special relativistic QFT to eliminate the zero-
point energy from ( TOp » has no obvious unique analogue on
curved space-time [26]. The situation is not hopeless, however,
and recent results obtained by imposing physical renormalization
conditions at each order in perturbation theory [36] may well

lead to a resolution of the problem. One of the most interesting
features of this gravity modified quantum theory is that the
linear superposition principle ceases to be valid because eguation
(1l.1) is non-linear. This certainly represents a dramatic break
from conventional quantum theory, but, as has been demonstrated

by Everett in his "many worlds" interpretation of gquantum
mechanics [27], it is not unreasonable to assume that the entire
universe is described by a single, smoothly evolving wave function,

thereby eliminating the need for a superposition principle.
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In addition to the two traditional approaches to the recon-
ciliation of curved space-time and quantum theory, there have
been several suggestions advocating the adoption of radically

different world-views. Most notable amongst these are the

twistor theory [28] being developed by Penrose and co-workers, in
which the spin group SL(2,C) plays a central role, and

Finkelstein's space-time code [29] in which quantum processes

are considered as fundamental and space secondary. Unfortunately,
these theories are extremely complicated and they seem to be
quite arbitrary. Unless they can be made more intuitive it is
unlikely that they will ever gain popular acceptance.

Much of the recent interest in quantum gravity seems to
have been stimulated by developments in elementary particle theory.
The non-abelian gauge theories have provided a single formalism
capable of handling all strong, weak, and electromagnetic inter-
actions; and, as a bonus, the fibre bundle picture of gauge fields
makes them look (at least superficially) similar to the gravita-
tional field [13]. If the graviton could be added to the elemen-
tary particle zoo, using gauge theory techniques, then particle
theory would, in a sense, be complete. From a different view-
point, gravity appeared as the only remaining physical phenomenon
that might be able to eliminate the singularities that occur
throughout quantum field theory. In either case, it was (and 1is)
suspected that gravity and particle physics are linked in some

fundamental way, and that neither one can be fully understood
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without the other.

In the remainder of this chapter I shall pursue this
connection between gravitation and particle physics, looking for
answers, not in quantum theory, but in the structure of space-
time. I take my guidance from Einstein, who showed most elegantly
that the removal of unnecessarily restrictive assumptions can

reveal beautiful and exciting physics.

2. Pregeometry is No Geometry

The key to special relativity was the revelation that time
need not be absolute. Einstein quickly realized, though, that
even the Minkowski space-time was too restrictive - its absolute
geometric structure could not be justified. Freeing up the geo-
metry led naturally to GR and an understanding of gravity never
before dreamed of.

In early investigations of curved space-time it was just
assumed that space and space-time have the topologies of R3
and R4 , respectively, but it was soon realized that this assump-
tion was also too restrictive. Observations of the universe
extend out only a finite distance, so on a very large scale the
topology is indeterminate. Other topologies (than R4 ) were
investigated and gave interesting results, and GR quickly assumed
a central role in the field of cosmology [30].

In the other direction, at small distances rather than

large, the situation is similar. Experimentally, we have only
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been able to probe to 10 1+°

-33
c

cm , which is a long way from the

Planck length, L_J = 10

p m , at which gravitational effects are

expected to significantly influence quantum processes. There is
thus no compelling physical reason to suppose that the space-

time topology remains trivial at lengths less than 10—16cm (or

10-33cm if you wish to be more conservative). Indeed, it has
often been suggested that the space-time topology becomes extreme-
ly complex at short distances, with the degree of complexity
increasing as the length scale decreases. As an extension of
their already unified theory, Misner and Wheeler [9] showed that
charge could be recovered from source-free electrodynamics by
assuming a multiply connected space-time. Looking more towards
quantum gravity, Wheeler [31l] conjectured that space is a "foam-
like" structure whose topology is constantly changing due to
guantum fluctuations at lengths of the order of LP . He envis-
aged particles as being macroscopic collective modes of the
fluctuating topology/geometry.

With the completely arbitrary topology of Wheeler's quantum
geometrodynamics, it would seem as though Einstein's programme
of removing restrictive assumptions about the structure of space
and time has been brought to a conclusion. But Wheeler is not
yet satisfied. He argues that if one can obtain electromagnetism
without electromagnetism and charge without charge, then one
should also be able to obtain geometry without geometry; and he

has coined the word pregeometry to symbolize the structure from
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which geometry arises.

The nature of pregeometry is very vague. Wheeler surmises
that it might be topological or even "pretopological”, but he has
no specific model for it. By drawing a picture in which each
topological configuration of space is endowed with a geometric
structure, he seems to imply, however, that pregeometry is some-
thing conceptually distinct from (and in addition to) the topology
of space or space-time. I believe that this picture is unneces-
sarily complicated; and that the pregeometry which Wheeler seeks
is nothing more than the topology of space-time.

Consider a 4-dimensional topological manifold, W , whose
global topology is extremely complex. Although it is always
possible to assign to W some particular geometry or field struc-
ture, I shall assume that all such fields are irrelevant - W 1is
completely characterized by its topology. Moreover, the global
topology of @ 1is not subject to any restrictions beyond those
that are necessary to preserve the manifold structure. Now imagine
trying to describe some of the gross features of the global struc-
ture of W without knowing all the fine features. The usual
topological descriptors become useless because they depend on a
complete knowledge of the details, but perhaps there is an alter-
native mode of description. If we consider a topologically simple
4-manifold, M , then perhaps we can replace (or symbolically
represent) some of the topological complexities of W with the

use of appropriately chosen fields on M .
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This is the basic picture of physics that I shall begin to
develop below. I think of the objective world underlying all of
our perceptions as an unimaginably complex, 4-dimensional manifold,
W . All of physics for all of time is coded into the topology
of W , but even this vast amount of information represents only
a tiny fraction of the information contained in W . If W 1is
the (real) objective world, then the space-time-matter world of
our perceptions is but a faint shadow. Matter and all its proper-
ties, life, and even intellect are contained in that shadow. 1In
this world of perceptions, most information about the topological
complexities of W is lost, and the remainder is represented by
matter fields defined on a topologically simple, geometrical space-
time manifold. Conventional space-time thus emerges as a replace-
ment manifold for W - a simplified version of W which has no
objective existence,

Wheeler's vision of transcending geometry is realized, not
by appealing to some new mathematical or logical structure, but
by recognizing the stupendous amount of information that can be
coded into the topology of a 4-dimensional manifold. If we think
of W as space-time viewed on a deeper level, then pregeometry
is the space-time topology. When geometry is born, topological
complexities must die; so geometric space-time is topologically
simple at small distances (in contrast with Wheeler's geometrical

space-time foam),
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3.  Breaking the Topological Code

My conjecture is that all of physics is encoded in the
mathematics of 4-~dimensional topological manifolds, and that the
particular world we are a part of corresponds to a particular
manifold, % . The problem now is to break the code and extract
physical laws from an (almost) unconstrained mathematical system.
I cannot claim to have done this, but I do have suggestions for
a scheme that I consider to be worth pursuing.

Again, just as in Chapter 2 , I shall begin with an inves-
tigation of 3-dimensional manifolds. My principal reference
here is "3-manifolds" by John Hempel [32], which is quite a
complete survey of progress, up until 1976, on the problem of
classifying all 3-manifolds. This is a very difficult problem
in topology and most of the techniques being used to solve it
are beyond the grasp of a novice like myself. Nonetheless, there
are some general results that are easily apprehended, and which
seem particularly useful for the physics problem I have set myself.

Let Ml and M2 be connected 3-manifolds (possibly with
17 B2 be’closed 3-cells in the interiors

of Ml ’ M2 , respectively. Removing the interiors of these

boundaries) and let B

cells leaves the remainders Ri = Mi - Int Bi , 1= 1,2 . A third

3-manifold M is said to be a connected sum of Ml and M2 if

there exist embedding maps ei:Ri + M such that el(Rl)f\ez(Rz)
e (3B]) = e,(3B,) and M = e (R e,(R,) . This is denoted

by M = Ml#M2 . If either Ml or M2 is non-orientable then
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Ml#M2 is unique up to equivalence; but if both are oriented then
two distinct manifolds may arise, corresponding to the cases when
el—loe2 is an orientation preserving and orientation reversing
homeomorphism of the 2-sphere boundaries. In situations I shall
consider, this ambiguity will never occur.

"Connected sum"is a well defined associative and commutative
operation, so for any finite k the notation Ml#Mz# .o #Mk
is unambiguous.

For any 3-manifold M it is obvious that M#S3 =M, so
the 3-sphere behaves as an identity element for connected sums.
M is said to be prime if M = Ml#M2 implies that one of Ml P

M2 is a 3-sphere.

3.1 Theorem Each compact 3-manifold can be expressed as a

connected sum of a finite number of prime factors [32].

Prime decomposition is not unigue. Hempel shows that if

M = Ml#(Szxsl) where M is non-orientable, then M = Ml#P .

1
Here P is the non-orientable 82 bundle over Sl (the

3-dimensional analogue of the Klein bottle) and both SZxSl and

P are prime. To get around this problem he defines a normal

prime factorization of a 3-manifold M to be a prime factoriz-

ation M = Ml# .os #Mk such that some Mi is Szxsl only if

M is orientable, This leads to the central result:

# oo M, = M* ¥ ... #M*

K 1 be two

3.2 Theorem Let M = M

1 k*




Ch. 4 75

normal, prime factorizations of a compact 3-manifold M . Then

k = k* and (after reordering) Mi is homeomorphic to M*i [32].

That is, there is a unique normal, prime factorization for each
compact 3-manifold (with boundary).

With this last result, the problem of classifying all com-
pact 3-manifolds is reduced to the problem of finding and class-
ifying all prime 3-manifolds. However this is still a very
difficult task which is far from complete. Even though an
infinite number of prime 3-manifolds have already been identified
there are many more yet to be found.

Now, what I want to do is to build up the topological space-
time manifold, W , by stacking together 3-dimensional submanifolds.
This will create a picture concordant with the perceived special
status of space-like hypersurfaces in geometrical space-time.

It will also introduce the concept of time on a fundamental level.
Although it is not clear whether this assumption is necessary or
not, I shall assume, for illustrative purposes, that W 1is
endowed with a differential structure of class C . The Whitney
embedding theorem [33] then allows me to consider W as a smooth
submanifold of RS ; inducing on W a (non-physical) Riemannian
metric, dg -

Let B be a closed 8-cell in R° such that W' = WNB
is a connected, compact (yet still extremely complex), 4-dimen-

sional submanifold-with-boundary of & and W' = W/ 3B is a
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Figure 3.1 W may always be considered as a submanifold of R

The closed 8-cell, B , is chosen such that @' = W(\B is

connected and SW' = W/\3B is closed.

8
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closed 3-manifold (Figure 3.1). W' will correspond to a closed
4-cell in geometric space-time, whereas the entire geometric

space-time (corresponding to all of W ) may have a non-trivial
topology. Choose,for the "initial" 3-dimensional submanifold of

W' , a submanifold S such that aSO = SOfXBW' is a 2-sphere

0
which divides 3W' into two pieces, one to the "past" and one
to the:"future" of aSO . With this condition on the boundary,
the prime decomposition of SO must take the form
S, = M # #, 483 (3.3)
O l * e @ k 14 L]

where B3 is the closed ball in 3-dimensions and the manifolds
Mi have no boundaries [34].

Turn now to the geometry induced on SO by the embedding
of W in R8 . Since its geometry has no physical significance,
we may deform W (and B ) in R8 to make it assume whatever
geometric configuration we wish, subject of course to the con-
straints imposed by topology. In particular, we can assume that
the embedding has been chosen so that SO takes the form of a
Euclidean space onto which a large number, k , of small, widely
spaced, prime 3-manifolds, Mi , have been fastened (Figure 3.2).
For comparison, the 2-dimensional analogue of SO is a Euclidean
disc onto which have been fastened (by cutting and pasting) a
large number of very small and widely separated handles (or

crosscaps). The main difference is that 3 dimensions provides

an infinite variety of distinct objects, rather than just
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Figure 3.2 The geometry of SO is chosen to make it appear
like a Euclidean space onto which small, widely separated,

prime 3-manifolds, Mi , have been fastened.

Figure 3.3 Hypersurfaces near SO are assigned similar

geometries so that the topological anomalies appear to travel

on smooth paths through W'
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Figure 3.4 (a) The topology of 2-dimensional slices through the

solid torus changes at the critical points w,x,y,z . (b) A dif-

ferent choice of geometry can produce additional critical points.
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handles or crosscaps.
Sufficiently small deformations of SO in W' vyield new
hypersurfaces with the same topology as SO . Let {St: t € IG}

be a continuous family of mutually disjoint hypersurfaces in W'

such that, for t > s , Ss may be continuously deformed through

W' into St , and aSt = SthSW' is a 2-sphere in the piece of
W' lying to the future of aSS . Each of the 3-manifolds St ’
t € I(S ; is homeomorphic to SO and has the same prime factor-

ization: Ml# .o #Mk#B3 . By choosing the induced geometries

to be similar to that already chosen for SO y W& arrive at a
simple geometric picture of an open region of W' containing

SO which portrays space-time as an (almost) Euclidean space that
is being traversed by k very small and widely separated topo-
logical anomalies (Figure 3.3).

If we try to deform S too far through W®' , however, we

0
will run into topological obstructions because W®' does not have
the product topology SoxI , with I a closed interval. This is
best illustrated in three dimensions, rather than four, by looking
at 2-dimensional slices through-the solid torus (Figure 3.4(a)).
Between a and b all of the slices have the topology of a disc,
but at b the 2-dimensional section ceases to be a manifold (due
to the singular point x ), and between b and ¢ each section
is the disjoint sum of two discs. The point x , and also w,y,z

are called critical points of the torus [35]. Although a differ-

ent choice of geometry, such as in Figure 3.4(b), could have
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produced additional critical points (which need be neither iso-
lated nor non-degenerate), only the four isolated and non-
degenerate critical points of Figure 3.4(a) are demanded by the
topology of the torus.

Returning to the topological space-time manifold, W' , we
see that we can continue constructing surfaces St , for ever
increasing t , until at some tC > § a critical point of W'
is reached. Beyond tc the topology of the hypersurfaces differs
from that of S0 . However, the change in topology that takes
place at an isolated critical point is small compared to the tre-
mendous complexity of SO ; indicating that most of the prime
factors, Mi , that appear in the factorization (3.3) of SO do
not participate in the topological changes and continue to appear
in the prime factorization of St for t > tc . Since the

topological change takes place at an isolated critical point in

W' , those prime factors of St — and St te that do partici-
c

péte must "meet" at the critical point. Adapting to this
situation the specialized geometry introduced above leads to the
geometric representation of W' shown in Figure 3.5(a), in which
distinct prime 3-manifolds are labelled by distinct integers.

It should be clear,from the above analysis, that all of
the topological complexities of W' are now represented by the
(labelled) graph-~like structure shown in Figure 3.5(b). Each

line corresponds to a prime, compact 3-manifold without boundary;
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Figure 3.5 (a) Different hypersurfaces of W may have

differeﬁt topologies. Changes in the hypersurface topology
take place at isolated critical points (small circles),

with only a small number of prime 3-manifolds, Mi , meeting
at each critical point. (b) Stripping the inessential
details from the geometric picture, (a), leaves a simple

graphical representation of W' .
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(a)

(b)
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and the integer(s) associated with it identify (through some as
vet unknown classification scheme) which element of the infinite
collection of distinct prime 3-manifolds is being considered.

The vertices, which correspond to critical points of @®' , need

no labels because they are completely characterized by the labelled
lines that emanate from them. Critical points such as B are
non-essential and can be eliminated by a more careful choice of
the hypersurfaces, St . However, the remaining critical points
(or vertices) are demanded by the topology of W' , just as the
four critical points of Figure 3.4(a) are demanded by the topology
of the torus. The minimal graph, obtained by eliminating all
non-essential vertices (such as B ), is thus unique up to the
operation of flipping external lines from the past to future and
vice versa (which corresponds to choosing a different 2-sphere

in 3W' to bound SO ) .

The vertices labelled A and C in Figure 3.5(b) are
included only because I cannot prove that such vertices do not
exist., The possibility of having vertices such as A seems
remote, however, and I shall assume from now on that they never
occur, If vertices such as C exist, which I also doubt, then
they can be eliminated by assigning the same label to all lines
that can be joined to each other by vertices like C . Thus,
the lines labelled 6 and 8 in Figure 3.5(b) would be assigned

the same label, say 6 . The new graph so obtained would be

uniquely determined by W®' , but it would no longer provide a
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faithful representation of this region of topological space-time.

By noting the remarkable similarity between the (not
necessarily faithful) graphical representation of W' and the
Feynman diagrams of quantum field theory, we can now initiate
the transition from topological space-time to geometrical space-
time., Think of W' as not just something that bears a resem-
blance to a Feynman diagram, but rather think of it as being a
Feynman diagram. Think of each line segment in Figure 3.5(b) as
a distinct wvirtual particle; and think of each vertex as an
unrenormalized particle interaction vertex.

The integer labels on the lines in Figure 3.5(b) identify
which prime 3-manifold is to be associated with each line, but
they serve equally well to identify the elementary particles.
There is thus a one-to-one correspondence between the distinct,
prime, compact 3-manifolds without boundary (excluding Sszl )
and the elementary particles of quantum physics. It follows
immediately that there is a countable infinity of distinct
elementary particles, and not just a (small) finite number as
is most often supposed.

Allowed particle interactions - that is, allowed vertices -
are determined in conventional quantum theory by the phenomeno-
logical field theory which the Feynman diagrams represent. In
the topological space-time, however, the rules which determine
what lines may meet at a vertex (critical point) are purely

topological in nature. They are imposed by the simple requirement
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that W be a 4-dimensional manifold, and they may, in principle,
be derived. Unfortunately, this "selection rule" problem seems
just as difficult as, and is clearly dependent upon, the classi-
fication of prime 3-manifolds.

Assume, nonetheless, that the classification and selection
rule problems are solved, yielding a complete array of particles
and interactions. The particles are naturally divided, by the
orientability of their corresponding prime 3-manifolds, into two
classes. One orientability class will yield bosons in geometrical
space-time and the other class will yield fermions. Which is
which must be decided with the aid of the selection rules.
Ultimately, the selection rules must also be called on to identify
the particular prime 3-manifold that corresponds to each known
elementary particle (electron, photon, etc.).

Turn, at last, to field theory. Abandon ®' and replace

it by the topologically trivial manifold, M' = B4 (with B4 the

closed ball in R4 ). Assume, for the time being, that M' has
a globally Minkowskian metric, n ; and construct on M' a
quantum field theory, @ , with fields Yy o i € v , such that

a one-to-one correspondence between the wi's and the prime
3-manifolds (without boundaries) may be found, which places the
interaction vertices of the Feynman graphs of Q in one-to-one
correspondence with the allowed vertices of W' . The parameters

(masses and coupling constants) of Q will, of course, be unde-

termined, but even when this freedom is ignored there may still
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be several theories, Ql ’ Q2 ' Q3 sees, Which satisfy the above
requirements. From this collection of candidate theories choose

the one theory, @ , that is cOmpletely determined by its Feynman

graphs.

Propagators in Q carry the virtual particles through M
with constant velocities; and interactions of the fields take
the simplest possible form that is consistent with the required
vertices. Whenever two or more different particles (fields) have
exactly equivalent, yet distinct, allowed interactions the associ-
ated fields have identical masses and coupling constants in @
(even though these parameters are not yet known). "Internal”
symmetries, such as colour SU(3) , thus arise out of the topology
of W in a natural way.

In order to fix the masses and coupling constants, go back
now and reconsider the geometry of M' . It was necessary to
assume a c-number metric in the first instance because without
it the whole quantum theory, @ , would collapse. However, a
physical metric, g , cannot be arbitrarily imposed, as n was.
Insteaa, g must arise out of a logical analysis of the topology
of W' and, in particular, the graphical representation of &'
obtained above. Since all of this topological information has
already been exploited in the construction of ¢ , our only
option is to have @ determine g in some self-consistent way.
The correct coupling will give g the simplest possible form;

and Mgller's proposal,
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G(T,V) = 8m(T (T, V) (1.1)

seems ideally suited for this purpose. All partial derivatives
in @ are now converted to covariant derivatives (minimal coup-
ling) and the state ) 1is determined by the particular topology
of W . It is to be assumed, as well, that a unique procedure
has been found for eliminating the zero-point energy from TOp
(cf. Section 1); and that Q has been renormalized on the back-
ground g , leaving only "physical" masses and coupling constants.

The specific geometry obtained from (l.l1l) depends not only
on the state, ) , but also on the values, m. , C that are

chosen for the masses and coupling constants. To obtain a

unique space-time geometry require that

g _
. and Se = 0 . (3.4)
i o

Solve these equations to find the unique set of physical masses
and coupling constants and hence the unique geometrical space-
time, {M',q,Q} , corresponding to W' .

I have moved quickly through this formal construction of
geometrical field theory, and in doing so I have passed over many
very real problems, both technical and philosophical. Most of
these are due to the non-linearity of the semi-classical field
theory. As mentioned above, some progress has been made on the
factor ordering (which must be solved to make ( T § finite);

op
but the problem of renormalizing interacting quantum fields on
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a self-consistently determined background geometry remains
untouched. Also required by the non-linearity of (l.1l) are
significant changes, of both an interpretive and a mathematical
nature, in the foundations of gquantum theory.

A new problem, more directly related to my topological
picture of the world, arises from equations (3.4). These equations
may be thought of as a generalized bootstrap, with the mutual
interactions of the elementary particles determining all the
masses and coupling constants. However, because the metric is
a tensor rather than a scalar field it may be impossible to satis-
fy all of the equations (3.4); and even if g had only one degree
of freedom (such as the Newtonian gravitational potential) the
solutions, m. , C, o would, in general, not be constants but
rather functions of the space-time coordinates. 1In this latter
case, one could reasonably expect counter-terms from the renormal-
ization to suppress fluctuations of the parameters, with any
remanent variations having a length scale much larger than the
radius, g/Vg , characteristic of changes in the local geometry.
No great problems will arise in the quantum theory as long as
the geometric radius remains large when compared with the Compton
wavelengths of the particles being considered; but if the masses
and coupling constants change too rapidly, or if it becomes
necessary to consider more than one component of ‘g , then the
entire field theory will collapse. It is worth noting that in

our local region of the universe the metric is, in fact, adequately
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specified by the one component, 90 and that fluctuations of

g about n have characteristic lengths of about 1015m

(at
the surface of the sun) or more. Thus, only in the neighbourhood
of a gravitational shock wave or some other equally catastrophic

gravitational event should the masses and coupling constants be

expected to change noticeably and, perhaps, become ill defined.

4, Summary

Although the technical hurdles still to be cleared are
immense, the rough outline presented above shows that the idea
of extracting field physics from the topology of a 4-dimensional
world is not so crazy as to be impossible. By constructing the
graphical representation of W' (and, by extension, W ) we are
actually led directly to quantum field theory. The intricate
web of virtual particles and interactions is reduced systematic-
ally, through the renormalization procedure, to leave a
"physical" graph that represents physical particles propagating
and interacting in a geometry of their own creation. This
geometry depends on the particular topology of W and is a
c-number field - gravity is not quantized. Unigqueness of the
fields is assured by choosing the masses and coupling constants
such that infinitesimal variations of these parameters leave
the geometry unchanged.

The splitting of space and time is essential in the con-

struction of a semi-local (neither global nor local)
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representation of the topology of W . So also is the dimension,
three, of space, because a non-trivial connected sum decomposition
is possible only in three-dimensions [37]. (A similar decompo-
sition is possible in 2-dimensions, but all factors are
identical.)

In the end, though, the most remarkable and compelling
feature of this topological world-view is its simplicity.
Providing the theory is born out by further analysis, all
perceived physical phenomena, including gravity, quantum effects,
and the detailed behaviour of the elementary particles, will be

understood as characteristics of an unconstrained 4-dimensional

topological manifold.



