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CHAPTER 3

MATTER FIELDS AND THE GEOMETRY OF SPACE-TIME

While much of the universe appears to be vacuous (or very
nearly so), we are unable to make direct observations of the
vacuum., Instead, we observe the matter that is contained in
the universe, and deduce from the distribution of matter the
geometry of both the vacuous and non-vacuous regions. It is
thus essential to include matter in any complete discussion of

the geometrical structure of space and space-time.

1. Initial Value Problem

The distribution of matter in space and its evolution in
time is characterized by a set of smooth tensor fields Fj ’
j € w , on space-time (cf. (1.1.8)). Since the space-time metric
g may always be used to lower indices, I shall assume (without
loss of generality) that the fields Fj are all covariant
tensors.,

Let F be a typical representative of the matter fields
defined on M' . (The notation here is the same as in Chapter 2
- i.e. M'" 1is an open cell in the space-time manifold, M .)
Then, on the initial surface, e(S) , the instantaneous configur-

ation of F 1is described by the hypersurface tensor fields
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etc.

The instantaneous rate of change of F 1is described by analogous
hypérsurface fields constructed from VEF ; the accelerations

are constructed from {V>V>F - V_ =>F} ; and so on.
nn >N

v

Although all of the fieldsnthat are induced on e(S) in
this way are a priori independent of each other, only a small
subset of them need be specified (along with the geometrical
initial data) in order to determine the complete set. For a
given matter field, Fi , only a finite number of the induced
hypersurface fields may be considered as initial data; and, as
with the metric, all of the time derivatives of Fi beyond some
given order, say m, , can be obtained as explicit functionals
of the lower derivatives of Fi , the initial data for the other
matter fields, Fj , and the geometrical initial data (discussed
in Chaptef 2).

Now suppose, once again, that the geometrical initial data

is given by 3g and K , corresponding to m = 1 . In the

vacuum case the dynamical equations for g took the form

ns = 1s[3g,k,3R,3vK,...] (2.4.1)

e

but when matter fields are present there is much more initial
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data upon which IS can depend. To avoid confusion between

the field, 1S , and the functional, I shall write
ns = 3g[ 1.D. 1 (1.1)

with I.D. representing the complete set of initial data fields
and their hypersurface derivatives.

Once the functional 3E has been chosen, equation (1l.1)
may be substituted into (2.2.25) to find VKK in terms of the
initial data and the deformation vector field, B ; and this,
together with the (as yet undetermined) dynamical equations for
the matter fields, allows us to compute VESE as a functional
of the initial data and D . We know from (2.4.2), however,

that this new functional must take the form

v23E(E,Y) = 3E'(G,T) + %TED*3P($) + %I$D*3P(E) , (1.2)
where 3E' and 3P are again explicit functionals of the

initial data. Further comparison with (2.4.2) gives

v>S(4,V) = 3E'(4,W[ 1.D. 1 (1.3)
and the primary constraint equations

s(d,n) = %I I.0. 1 . (1.4)

These constraints on the initial data must always hold on
e(S) . But since e(S) is arbitrarily chosen they must also be

satisfied on any other space-like hypersurface. It immediately
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follows that
n(s(a,n) - 3P(A)) =0 . (1.5)
Expanding this and using (l1.1l) and (l1.4) we find that (with 3P(K)=0)
V230 () = vas(d,B) + A0S (R,D) - g%rigﬁin*?»E(E,Hi) . (1.6

But VxS must be independent of B , so when VK3P(ﬁ) is com-

puted directly it must take the form

> - 1l > 4 1l o> & > >
VK3P(_u) = 3p'(u) + STub'F - ED—*iZhiD 3E(u,hi) , (1.7)
where F and 3P' are functionals of the initial data. Compar-

ison with (1.6) then gives the secondary constraint
s(a,n) = F . (1.8)

The equations (1l.1),(l.4), and (1.8) are easily recognized

as the Einstein field equations:
s(U,V) = E(T,V) (1.9)

where E 1is the symmetric space-time tensor defined by

E(4,v) = 3E(Q,v) ,
E(G,R) = 3P(Q) (1.10)
E(n,n) = F .

By defining the Einstein tensor

G(U,V) = s(U,V) - %g(0,V)s , (1.11)
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and the stress—energy tensor (in natural units)
T(U,¥) = (1/8n) (E(U,V) - %g(T, N (JE(R,,K,) + E(@,A)) , (1.12)
i

which, like E , is an explicit functional of the initial data,

the field equations may be recast into their standard form:
G(T,V) = 8rT(U,V) . (1.13)

The cosmological term appearing in the vacuum equations, (2.4.15),
has here been absorbed into. T .

The role of the stress-energy as the source of the gravita-
tional (metric) field is now manifest. But we are not finished
yet. If the tensor S is to be a genuine Ricci tensor, then it
must satisfy the contracted Bianchi identities:

Jvg S(B;,V) + ev2s(3,V) = 5VUs . (1.14)

it n
Through (1.13), these give us conservation laws that the stress-

energy must satisfy:

Jvg TR, V) + evaor(n, V) =0 (1.15)
i i
or, in terms of hypersurface fields,
3 3—>—>_;/33—>—> _ TP N3
g{ vﬁi E(h;,V) s Svy3E(h,,h)) - K(h,B;)3P (V)
- KB, M) = eCFF - 21V, (1.16)

and
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nF = 28——2h D3P (H;) + eJ{3E'(R,,B) + 2k(K ,H)F
i
_ 53 3o (T Y O RN SPE, S o
2 vKi P(h,) 25§K(hi,hj) E(R; B0 . (1.17)

Equations (1.16) and (1.17) are constraints on the form of the
equations that govern the evolution of the matter fields, so
through the Bianchi identities gravity exerts a back-reaction

on matter.

Example. To illustrate this coupling of gravity and matter, I
shall assume that the only matter field defined on space~time is

a real scalar field, ¢ . On the initial hypersurface, e(S),

¢ 1is characterized by the fields

¢ K¢ ’ {KH¢ - VKK¢} , etc.
For the functional 3E = I3E , I choose the form defined by

3T Ty o T2 3 > 3y 2 2

E(u,v) = u¢ve + 3 g(u,v)u ¢ 7 (1.18)

where 1y 1s a constant. Differentiating this along n gives

V23E(G,V) = RO3E(G,V)) - PE(vz4,V) - 3E(d,v2V)

>> > > P P e i - 2 2 3., > 2 -
= nu¢ve + u¢nve + %n(3g(u,v))u” ¢~ + 3g(u,v)u” ¢n¢
> > > > > > >
- 3E(——£+ u - egK(u,hi)hi,v) - E(u,D‘£+ v - egK(v,hi)hi)

= éJ_uD neve + Uneve + ]]3'LVD ngup + Uvng + X 3g(vKE,$)p2 ¢2

+ % 39(3,V;3)u2 82 + 3g(L, V) u’ onmé - % 3g(Ectx.
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+

eJR(E, B (R ov + % 2B, 007 0% - % 2@ Ertg )’ o7
1

2

+ eJK(V,hH,) (B, ¢Us + % 39(G,Ki)u2 $°}

1l

(A(R$) Ve + Uov(he) + 3g(3,9)u? one + e] (R(4,h,) V9
1

]___+

> > > > > > 1l > ,»> >
+ K(v,hi)u¢)hi¢} + DLVD‘n¢u¢ + BTuD*n¢v¢ , (1.19)

where extensive use has been made of (2.2.11) and (2.2.16). AS
required, this final expression takes the form stipulated in (1.2);

and by identifying the appropriate terms we find

SE'(U,Y) = W(HEe)Ve + WV(He) + 39,V u’ oho
+ el {K(U,B)Ve + K(V,A)GeYR 0, (1.20)
1
3p (W) = n¢u¢ . (1.21)
If we set 3P(E) = 0 , then (1.21) can be differentiated
to give

v23P (1) = R(3P(Q)) - 3P (V)

= Ué (nn¢ - VKE¢) + n¢(Une¢ + eZK(ﬁ,Ki)Ei¢)
1

+ %TED*(K¢K¢ r xeu? 4% - e%rZﬁiD*(G¢ﬁi¢ + % 3g(ﬁ,ﬁi)u2 42 .
1

(1.22)
This takes the required form, (1.7), and again identifying terms

we obtain

F = n¢n¢ + %eu” ¢ , (1.23)
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P' (W) = U¢(nn¢ - VzA¢) + M¢(UR¢ + eJK(U,BIR.0) . (1.24)
i
The functional forms of 3g, 3g', 3P, 3P', and F can now
be substituted into the conservation laws (1.16) and (1.17) to

give, respectively

> o> _ 3 > _ > > > o >
{g(hihi¢ vﬁihi¢ K(hi,hi)n¢) + e(nn¢ V3n¢)
S TR (1.25)
> > _ 3 > _ > > > T >
{g(hlhi‘b Vﬁihicp K(h,,h;)n¢) + e(nng - vang)
2 >
- 1% ¢Ing = O . (1.26)

These equations must be satisfied everywhere on e(S) , but since

. . > >
at generic points n¢ and/or u¢ are non-zero we must set

JB.B o - vx Bogo) + c(@ho - vahe) - We=0 . (1.27)
1 1

This last equation is easily recognized as the Klein Gordon
equation, and from it we deduce that the initial data for ¢
consists of just the two fields, ¢ and K¢ , on e(S) . The
space-time metric must satisfy the field equations (1.9), with
the explicit functionals obtained above being used in (1.10)

to define E .

It is clear from the equations (1.13) (or (1.9)) that, as
in the vacuum case, the dynamical equations governing the evolution

of the metric are always supplemented by a set of primary and
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secondary constraint equations in such a way that the complete
set is covariant in the space-time fields from which the initial
data is constructed. This is equally true when it is supposed
that time derivatives of g beyond the first are included in
the initial data (i.e. m>1l). Thus, for m = 2 , the vacuum

equations (2.3.5) generalize immediately to
m.
VS = VS[g,R,Fj,VFj,...,V JFj] (1.28)

when matter fields are present.

The back-reaction of the space-time geometry on the matter
fields is also present, but less obvious, when m > 1 . Once
the geometrical field equations (i.e. equations (1.28) for m = 2)
have been chosen, one must always check to see that they are com-
patible with the Bianchi identities (1.14); imposing restrictions
on the matter field equations to assure this. These restrictions,
when they are necessary, represent geometry's reaction on matter.

Before proceeding to the next section, a few brief remarks
regarding gauge fields are in order. For convenience in the fore-
going discussions, I have implicitly assumed that the distribution
of matter in space-time is characterized by a unique configuration
of the fields Fj . However, it is well known that many different
configurations of the same set of fields (here more appropriately
called gauge potentials) may actually provide equivalent, complete
characterizations of the same matter distribution [12]. Moreover,

it may be necessary to define the potentials, Fj ; pPiecewise on
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overlapping neighbourhoods, in order to cover the entire space-
time manifold [13]. (If Fgl) and ng) are the field configur-
ations on the overlapping neighbourhoods U and U of M,

1 2
respectively, then on the overlap region, ul(\u2 , both Fgl)

J

and ng) characterize the same matter distribution.)

The degrees of freedom in the fields Fj that are not
needed to uniquely specify the matter distribution are called
the gauge degrees of freedom, and the associated (gauge fixing)
fields have no physical significance. When written in their
four dimensional form in terms of space-time fields, the physical
field equations make no reference to these non-physical fields.
Nonetheless, in order to cast the field equations into an initial
value form, specific gauge fixing conditions, which will have
no ultimate effect on the physical predictions, must be chosen.
In the first part of this section, no mention was made of these

arbitrary gauge conditions, but since the gauge conditions have

no influence on the physics, no generality was lost.

2. Alternative Geometries and Unified Field Theories

A great number of researchers have tried, during the past
sixty-five years, to develop a new theory that maintains the
philosophical and empirical successes of GR while either extending
its domain of validity or else evading some of the philosophical
problems that plague GR. The main premise of almost all such

efforts is that the pseudo-Riemannian geometry of GR is too
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restrictive to provide a complete description of the world and,
in particular, that the "physical" covariant derivative has
non-vanishing torsion.

Einstein himself was never completely happy with GR,
primarily because of its singular solutions. Considering GR
to be just a macroscopic theory, he hoped to be able to find a
more complex geometric theory that would yield a singularity-
free model for an elementary particle. As early as 1928 Einstein
suggested a theory of gravity with non-vanishing torsion, but
zero curvature [14]. His later efforts to construct a unified
theory of gravity and electromagnetism [15] presumed a still more
complicated geometry, with a non-symmetric fundamental tensor,
the symmetric part of which was a locally Minkowskian metric, and
again a non-trivial torsion tensor. Although Einstein never de-
veloped a completely acceptable model, it has been shown recently
by Moffat and co-workers [16] that all of the phenomenology of
gravitation and (classical) electromagnetism may be understood
within the context of the (pseudo-)hermitian geometry of the
Einstein=-Schrodinger theory ([1],[17]). Moffat [1l8] has also
shown that a variation on the Einstein-Strauss theory [15] can
lead to particle-like solutions which are non-singular in the
sense that they are world-line complete, even though there are
singularities in some of the field invariants.

The desire to obtain a renormalizable guantum theory of

gravity seems to be the main reason for renewed interest in
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Einstein~-Cartan type theories [19]. Several different models
have been proposed [20], with spin being coupled to gravity,
through the torsion, in a non-trivial way. However, all such
efforts seem to lead to a torsion field which is algebraically
related to spin, and which, therefore, does not propagate as
an independent field.

On the surface, it may seem as though the formalism I have
developed excludes from consideration any kind of geometric struc-
ture for space~time other than the pseudo-Riemannian geometry of
GR, and thus all of the "generalized" or "unified" theories based
- on alternative kinds of geometry. This is not the case, however,
All that I have done was to separate the metric defined on space-
time from any other tensor fields that are pertinent to physics,
and then determine what sorts of equations are capable of propa-
gating the metric forward in time. Since, in each of the theories
discussed above, the alternative geometries always include a
metric tensor, and since the metric must always propagate, the
results of Section 1 remain applicable even for theories with
non-Riemannian geometry, provided additional geometric fields
such as the torsion or the skew part of a non-symmetric funda-
mental tensor are treated as "matter" fields.

This general applicability of the (pseudo-)Riemannian
results should not be surprising, and has actually been known
for a long time [21]. It follows from the well known fact that

the difference of any two affine connections is a tensor field.
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What it implies is that any theory that is based on a non-
Riemannian geometry (which includes a metric) may always be re-
formulated in terms of (pseudo-)Riemannian geometry plus tensor
fields; and, in particular, any physical theory whose field
equations include derivatives of the metric up to and including
second order, but no higher, is mathematically equivalent to
Einstein's general theory of relativity (with sources). Thus,
while they cannot be dismissed altogether, the advantages of
introducing alternative geometries seem limited to the motivation
of field equations different from those that would normally be

investigated, and of new interpretations for physical fields.

3. Already Unified Theory

Rather than probing new kinds of geometries, Misner and
Wheeler [9] followed the early work of Rainich [8] and showed
that the conventional (pseudo-)Riemannian space-time already pro-
vides a sufficiently rich structure to accommodate both gravity
and electromagnetism.

For compactness in the exposition of their findings, I
shall now adopt a component notation, with indices 1i,j,... and
a,B8,+so ranging from 0 to 3 , and repeated indices being
summed. The vectors Ki , 1i=0,1,2,3 , will now represent a

vierbein field:

> >
g(hllhj) —-.nij ’ (3.1)
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while 3a r a=0,1,2,3 , are the coordinate basis vectors for some
implicit coordinate chart. Corresponding l-forms h' and gga

are defined by

i,» _ i a X _ L0
h (hj) =87 and dx"(9,) = &7, . (3.2)

The "already unified" theory of Misner and Wheeler is not
a new theory, but just standard Einstein-Maxwell theory (with a
source-free electromagnetic field) written in a purely geometrical
form. Let F = %FasgﬁaA §§B = %FijEiA Ej be the 2-form repre-

senting the electromagnetic field. Then its Poincaré dual is

the 2-form *F = %*Fa8§§uA §§8 whose components are defined by

* = uv 2> - 2
F,o = F Det(aa,gs,au,av) , (3.3)
where FM*V = guA gvg Fxc and Det 1is the volume 4-form
pet = h°A htAn?An® . (3.4)
In terms of F and *F , the source-free Maxwell equations
take the simple form
drF = 0 and d*F = 0 ’ (3.5)
and the Maxwell stress—energy tensor has components
- ! * %@ H
Tyg = Fou Fg + *Fo, *Fg . (3.6)

The complete Einstein-Maxwell system thus consists of equations

(3.5) and (l1.13), with the stress-energy tensor in (1.13) being
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given by (3.6).
Rainich [8] showed that, gquite independent of the Maxwell
equations, (3.5):, any Ricci tensor arising from (1.13) with the

stress—-energy tensor (3.6) must satisfy

S = Saa =0 , (3.7)
B Y _ Y o1

S, Sg 5, '(s__ 87"/4) , (3.8)

Spp * O . (3.9)

Misner and Wheeler proved the converse, showing that any geometry
whose Ricci tensor satisfies the Rainich conditions, (3.7), (3.8),
and (3.9), can be represented as the "Maxwell square", (3.6), of
some skew field F . They showed, moreover, that the field F

is uniquely determined by S (using equations (3.6) and (1.13))

up to a global duality rotation:

F > e** F =F Cos a + *F Sin o . (3.10)

Defining the l-form o = au§§” by the equation

= ABju v )
OLT (Det)"ckuv S SB /(SYss ) ’ (3.11)

they then showed that if (3.7), (3.8), and (3.9) are satisfied and
da =0 ' (3.12)

then the field F whose Maxwell square is S will automatically

satisfy the Maxwell equations, (3.5); and they gave an explicit
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procedure (the details of which are not important here) for
finding F , given S , in the restricted case that S is not
null (s_ s # 0).

The equations (3.12) are fourth order differential equations
in the components of the space-time metric, g , and taken to-
gether with the Rainich conditions, (3.7), (3.8), and (3.9), and
the Misner-Wheeler procedure for finding F , given S , they
constitute a purely geometrical, "already unified" way of repre-
senting the Einstein-Maxwell equations. The electromagnetic
field, in this picture, is a derivative guantity and never enters
on a fundamental level. The only fundamental field is g .

While its development was a great achievement, the already
unified theory of gravity and electromagnetism is not without
problems., The first of these is that it is unable to cope with
electromagnetic fields that are null on any set of measure greater
than zero. This is not too severe a restriction, though, since
in reasonable physical situations one would expect the electro-
magnetic field to have a coulomb component that is non-vanishing
at generic points. More serious problems are the lack of a
Lagrangian formulation for the theory, and the certainty that
any linearized version or initial value formalism of the already
unified theory would be indistinguishable from corresponding
treatments of the Einstein-Maxwell theory.

Aside from its failings, and the obvious fact that no

experiment can distinguish it from Einstein-Maxwell theory, I
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find the already unified theory very interesting for the following
reason. Suppose that Einstein-Maxwell theory actually provides
a“correcﬁ'description of the mutually interacting gravitational
and electromagnetic fields, and that in the region M' of space-
time there are no matter fields other than the electromagnetic.
Then the work of Rainich, Misner, and Wheeler indicates that if
we make thorough measurements of the metric on M' , then we can
deduce from those measurements the configuration of the electro-
magnetic field (up to an overall duality rotation). There is no

need to make measurements of the electromagnetic field indepen-

dently of the measurements of the space-time geometry.

Even if one wanted to make direct measurements of the
electromagnetic field, how would one do it? The simplest pro-
cedure would be to take a known charged particle, say an electron;
set it adrift with some initial velocity, v ; and make careful
observations of its trajectory. But in charting its trajectory
through space~time we would be measuring distances - that is,
measuring the space-time geometry - so we really wouldn't be
making direct measurements of the electromagnetic field.

I have not studied the problem sufficiently to make a
definitive statement, but I suspect that all attempts to make
direct measurements of the electromagnetic field would be similarly
doomed. Jumping far beyond the domain of electromagnetism I

shall adopt the following hypothesis:
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Hypothesis: The only physical field that may be measured

directly is the space-time metric. The configurations of all
matter fields defined on space-time must be deduced from the

space~time geometry.

If this is the case, and if we still want to think of the matter
fields as being somehow fundamental (as they are in gquantum
mechanics), then should we not think of the metric as being just
the messenger of the matter fields, shouting out their existence
and their characteristics as clearly as possible without colouring
or obscuring the message unnecessarily with its own idiosyncracies?
But the metric would fulfil this task most readily if it were to
couple to the matter fields in the simplest possible way, through
the Einstein equations (1.13), leaving the determination of the
space-time geometry completely up to the matter fields. 1In any
higher order dynamical equations for the metric (m > 1), all of
the components of the curvature would be included in the initial
data (albeit constrained) making it potentially impossible to
decide what portion of the curvature is "gravitational" in origin
and what portion should be ascribed to the matter fields.

It also follows from my hypothesis, that if the various
matter fields are to be perceived, and distinguished from each
other, then they must each leave a distinctive "imprint", analo-
gous to the imprint created by the electromagnetic field, on

the space-time geometry; and accordingly, that there must exist
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a super already unified theory capable of providing a purely

geometrical description of all forms of matter. Any reasonable
theory of interacting metric and matter fields must therefore
be able to be recast into an already unified form, and if it
cannot be, then it must be rejected.

The last two paragraphs were, clearly, quite conjectural,
and I do not intend that they be taken as more than that. None-
theless, I believe that these conjectures deserve further inves-
tigation, firstly because of the remarkable Rainich, Misner,
Wheeler results, and secondly because only by pursuing such ideas
can we ever hope to gain an understanding, based on physical
ideas rather than mathematical conveniences, of why the particular
equations we use to describe the world should be more appropriate

than any other set.

4, Global Considerations

Throughout the foregoing discussions no assumptions have
been made about the global topology of space or space-time.
Instead, I have restricted my attention to some open cell, M' ,
in space-time on which all physical fields are well defined and
of class C . For each generic point, x , of space-time there
exists such a cell containing x , so all of the conclusions I
have drawn respecting field equations hold at all generic points.

The global topology of space-time becomes important, how-

ever, when one starts investigating solutions to the field
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equations. The interrelationship between the pseudo-Riemannian
geometry and the global topology of space-time, and the topology
of space-like hypersurfaces of space-time, is discussed exten-
sively by Hawking and Ellis [22]. Here, I would just like to
point out that since any manifold may be constructed by piecing
together open cells, any solution of a set of field equations may
be (and in practice is) constructed by piecing together solutions

defined on open cells.



