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CHAPTER 2

THE GEOMETRIC INITIAL VALUE PROBLEM

In this chapter and the next, I shall attempt to establish
very general criteria that any acceptable theory of gravity must
satisfy if it is to be compatible with the first principles
(1.1.1) to (1.1.9). The present chapter is devoted to the inves-
tigation of vacuum space-times (on which the metric is the only
fundamental field), with matter fields being added in Chapter 3.
General relativity will emerge as the simplest possible acceptable
theory in both the vacuum and general cases, and conjectural
arguments will be given in Chapter 3 to support the claim that

GR 1is the "correct" theory to use.

l.  Space-time, Space, and Its Time Evolution

I shall begin, in this section, by developing a suitable
mathematical formalism for describing the evolution of space
through space-time. The conceptual picture I shall draw is not
new, having been used by several authors [3],[6],[11] , but in
the past a coordinate representation has always been used. My
notation, here and throughout the thesis, is completely coordinate
free. Topological and geometrical concepts are thus kept to the
fore, and complete covariance is assured. For simplicity it is

assumed that space and space-time are diffeomorphic with R3 and
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R , respectively. Global topological considerations are
discussed, briefly, at the end of Chapter 3.

Let S be an open cell in 3-dimensional space; let M be
the space-time manifold; and let e:S - M be a smooth embedding.

Then it is always possible to construct a smooth map
Ey:S > CT (I ,M) , (1.1)

from S into the set of ¢ maps from the interval IG = (-6,98)

into M , such that each of the maps

Dt:S > M ; Dt(x) = (ED(X))(t) s t €I, x €S, (1.2)

§

is a smooth embedding, and
D. = e . (1.3)

The hypersurfaces so defined are neighbouring in the sense that
as t approaches t0 the hypersurface Dt(S) approaches Dt (S)

Ny 0
arbitrarily closely.

A differential description of the motion of Dt(S) through

space-time is provided by the vector valued maps

DS > T(M) ;5 B (x) € Tp, () (0

which are defined by
B.ex) = L (£(D, (x))) (1.4)
e v £ () .

for all differentiable test functions, f:M > R , and all x € S .
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As t 1is increased, the hypersurface Dt(S) is deformed contin-
uously through M , with each point Dt(x) following the trajec-
tory of the vector Bt(x).

In general, the hypersurfaces Dt(S) need not be disjoint
surfaces in M . The image space, D;(S) , could even be the

same for all of them, each map D being obtained from e by

t
composing it with a diffeomorphism of S . I shall consider,
however, only those maps E, for which D%(S)(\ D;(S) =@ for
all t ¢ I6 and s # t . This means that the hypersurfaces Dt(S)
provide a foliation of some open region M' C M which has the
topology S><I6 = R* . The vector fields 6t may now all be com-
bined to form a smooth deformation vector field, D:M > T(M) ,

defined on M' :

Bx) =B o tx)  , x¢€ D ($) . (1.5)

*

Specification of D and e uniquely determines ED ; SO in that

which follows no direct reference will be made to ED . For

convenience, I shall assume that a particular choice of e and

D has been made.
Consider now, a vector field W on S . Each of the maps

Dt may be used to push U forward onto M , yielding parallel

vector fields Dy x

the hypersurfaces provide a foliation of M' , each point in M"'

a defined on the surfaces Dt(S) . Because

will have associated with it exactly one vector, thus yielding a

smooth vector field on M' , also denoted by a , which is
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everywhere parallel to the hypersurfaces Dt(S) and satisfies
.
txu = 0 . (1.6)

(Wherever it is practical in that which follows, I shall use the
symbols G,%,%,... to denote vector fields on S or parallel
vector fields on M , and the symbols G,G,W,... to denote general
(not necessarily parallel) vector fields on M . Other symbols
will be treated individually.)

Now, if M is the space-time manifold, then in accordance
with (1.1.8) it must have defined on it a set of smooth tensor
fields, Fj + J € w , such that each universe U may be realized
as a submanifold of M , with the fields of U determined by the
fields on M . 1In particular, since I want to consider e(S) as
space at some time, there must be a symmetric field g of
type (0,2) de?ined on a region of M containing e(S) , such
that the pullback e*g is a Riemannian metric on S . For the
purposes of this chapter, I shall assume that g is the only
fundamental physical field defined on M' .

Knowing e*g , it is always possible to construct a triad

field of orthonormal basis vectors, ﬁi , on S

e*g(ﬁi,ﬁj) =654 , i,3=1,2,3 . (1.7)

These can be pushed forward onto e(S) , and used there to con-
struct an operator, 1T , which projects space-time vector fields

ﬁ,%,...,ﬁ onto the hypersurface:
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> 3 o>
n1(0) = § g(U,e,h,)eh, . (1.8)

Space-time vectors defined at points of e(S) may thus be decom-

posed into parallel and perpendicular parts, even if g is

singular:
g =0"+B* |, o=@ . (1.9)

The vector field U defined above is, of course, already parallel:
o= T(A) . We may also use 1 to construct, on e(S) , a hyper-
surface metric, 3g , which will prove to be much more convenient

than e*g . It is defined by
3g(T,%) = g@", ¥ = gn(@ , 1)) . (1.10)

The definition of space-like given in (1.1l.3) guarantees
that if e(S) 1is space-like (which I assume to be the case),
then any hypersurface obtained from e(S) by a smooth infinites-
imal deformation is also space-like; but this property does not
necessarily hold for finite deformations. I shall assume, however,
that D has been carefully chosen so that all of the hypersur-
faces Dt(S) are space-like, deferring until later a discussion
of the constraints imposed on D in order to assure this. With
this assumption, it is clear that the pullback, 3gt = D, 49 , of
g onto S , corresponding to each of the hypersurfaces Dt(S) ’
is positive definite; and both 1 and 3g may be extended

smoothly to all of M' . Of course, this extension is not unique,
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depending as it does on the particular choice of D .

2. Initial Data

The tensor field 3gt provides a complete description of
the Riemannian geometry of space at the time labelled by t .
As t 1increases, the field changes continuously, its rate of

change being given by

d__ 3 > > o > >
e ( gt(u,V)) (x) = txg(u,v) (D, (x))
- 3, > ' > >
Exu g (u,v) (D (x)) + tgag(u,v) (Dt(X)) ’ (2.1)
where B” = H(B) ’ 5* = B - B" , and 3,3 on the left are arbi-
trary vector fields on S , and on the right they are the corres-

ponding induced fields on M , which satisfy iﬁﬁ = £53 = 0 .
Considering just the "initial surface", e(S) , we see that once
B" has been chosen, the first term on the right is uniquely
determined by the hypersurface metric, 3g , which is equivalent
to e*g . The second term, however, is not determined by known
data, nor is it invariantly defined, depending as it does on the

=g R
component, D

, of the deformation vector field that cannot (yet)
be specified from within the initial surface. Higher order deriv-
atives, constructed by iterating (2.1), depend on D in still
more complicated ways.

All by itself, the field 3g , restricted to e(S) , provides

insufficient data to determine the geometry of space at any other
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time; but the only other tensor fields available on e(S) are the
time derivatives discussed above. If we are to be able to con-
struct the dynamical theory that is demanded by (1.1.9), then

we must find some way of extracting the deformation dependence
from these time derivatives to leave behind invariantly defined
physical data. It is not difficult to see that this separation

can only be achieved if B* can be expressed in the form
D* = p'n , (2.2)

where D% is a scalar field (which can be specified from within

e(S)) and n is a perpendicular vector field that is completely

determined on e(S) by g and the embedding, e . (In Newtonian
gravity A would be an absolute time-like vector field, but that
is excluded here by the assumption that all fields are dynamic.)

Assuming such an n , the offending last term in (2.1) can be

written in the form

£2.9(T,9) = B g@,¥) - gx.8,9) - g(@,.9)

= D'R(g(U,¥)) - g(D*4xd - W*A,V) - g(4,p' £3v - ID'R)

= D't2g(d,v) . (2.3)
The tensor 3g' , defined by

39" (6,9 = Lzg (B, 1) (2.4)

is thus the invariantly defined piece of initial data that allows
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us to complete the specification, from within e(S) , of the

rate of change of 3g

TeCg ) | g =t a@D) + D3 @, . (2.5)

The fields n and 3g' , just like T and 3g , may be
extended to all of M' by constructing them on each of the hyper-
surfaces Dt(S) . Equation (2.4) remains the defining equation
for 3g' , while n always satisfies T(R) = 0 .

As stated above, the field n must be completely deter-
mined by the space-time field g and the set of embedding maps,
Dt . Since space is of co-dimension one in space-time, it is
possible, using only the properties of g assumed in the previous
section, to uniquely determine the direction of n  at each point
of M' . However, in order to fix the magnitudes of these vectors
we must make the additional assumption that g is everywhere
non-singular. With this condition, n may be chosen to be a

field of unit vectors that are everywhere normal to the hyper-

surfaces Dt(S)

g(g,ﬁ’) = g ’ e = x1 ;
-> - (2.6)
g(n,n(¥)) =0 for all T € T .

The sign, ¢ , of g(ﬁ,ﬁ) need not be specified at this point,
but must eventually be set to -1 1in order to accommodate Dirac
spinors and to prevent space-like events from being causally

related.
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Being non-singular, g is a {(pseudo-)Riemannian metric on
M' . It uniquely determines a covariant derivative, V , while
the hypersurface metric, 3g , determines a covariant derivative,

3V . These satisfy

>

U(g(V, W) = g7V, W) + g¥,vgi)

u(3g(v,w) = 3g(3vv,w) + 3g(¥, 3w, F(2.7)

3vsv = M (3v=%) ]
u u )

and are uniquely determined if their torsions are set to zero:

[6,91 = vp¥V - vo0 [G,%) = 3753 - 3vei (2.8)
They are related by

VeV = 3V + K@@, V)R, (2.9)
wﬁere K(ﬁ,ﬁ) = K(§,ﬁ) = K(H(ﬁ),n(ﬁ)) is the extrinsic curvature

tensor. K 1is actually not new, since

3" (U, V) = tzg (@) ,1()

n(g (@ ,1(N) - glz(m@®), 1) - g@@ (1))

9V @R AD) + g,V 30

- 9@,y 1) - g(v 3 1@, 5

- 2¢K(U,V) ) (2.10)
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The second line, here, is obtained with the use of Leibniz' rule
for t ; the third line uses Leibniz' rule for V and the first
half of (2.8); and the fourth line again uses Leibniz' rule for

Vv and the second half of (2.6). This repeated use of Leibniz'

rule and the free interchange of Lie and covariant derivatives,

made possible by equations (2.8), will characterize many of the

calculations that follow.

Also used extensively are the following relations. Let

U be a parallel vector field: H(E) = U . Then
[n,a] = %T(EBLE + up*n) . (2.11)

It is obvious that both LBﬁ and £Bu3 are parallel; but this

implies that £3¢3 = £BG - £B"ﬁ is also a parallel vector

field. Thus
> > 1 -
I([n,u]) = =tz 0 . (2.12)
D D
Since n is a unit vector it must satisfy
g(8,v28) = g(A,v3R) =0 (2.13)
so the perpendicular part of (2.11), taken with (2.8), gives
£

g(#,va8) = el Dt . (2.14)

Now let ﬁi’ i=1,2,3, Dbe a triad of orthonormal parallel

T I will use the notations Eﬁﬁ and [ﬁ,@] interchangeably.
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vector fields on M!

The quadruple (E,ﬁi) is then a vierbein for g , in terms of

which any vector field may be expanded. 1In particular

VGE = gg(vﬁg’ﬁi)ﬁi + eg(vaﬁ,ﬁ)ﬁ

= —%g(K,Vaﬁi)Ki

= - ]Z-K(ﬁ,ﬁi)ﬁi , (2.16)
VEE = gg(VEE,Ki)Ki + eg(VKK,E)E

-+ > >
= —gg(n,VEhi)hi
l - 47
= -e5T ZhiD h, . (2.17)
1

A feature of these relations that will arise repeatedly is that
any derivative along n , if it is not determined by some identity
(as in (2.13)), must depend explicitly on the deformation vector
field.

Associated with V 1is the Riemann curvature tensor, R ,

of space-time:

b

R(G,V)W = v (2.18)

Similarly, the hypersurface curvature tensor, 3R , is constructed

with the use of 3V . Its non-zero components are given by

SR(U,V)w = 3V+3Vow — 3va3vsw - 3V o> . w . (2.19)
a v v 'u [a,v]
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If we maintain the convention that 3,?,@,... are hypersurface
(parallel) vector fields, then we find that there are four dis-
tinct kinds of terms into which R may be decomposed: R(G,$)§ ’
> > > > > > > > > .
R(u,v)n , R(n,v)w , and R(n,v)n . These may be expanded, in
terms of hypersurface fields, as follows:
R(G,VIW = R, MW + (3V2K(@,w) - V2K (3,w) In
+ eJR@WEKE,E) - XE,WwK@,A) IR, (2.20)
i
> > > > > > > ->
R(U,v)n = -g§{3VGK(V,hi) - 3V$K(u,hi)}hi , (2.21)
> > > -> - >
R(n,v)n = V>V»>n - V>V>n - V > >.n
nv v n [n,v]
_ _ > > > _ _ ]__—> 17>
=V ( egK(v,hi)hi) V2 (-est h,D'h,)
1 > > 1 2 > _Lv> 17
+ eﬁrgK(£B¢v,hi)hi + e(5r) 7 VD ghiD hy
- _ > > _ ]__ > >, _ 3 >y
= E:ZL{VEK(V,hi) =r(h,vD v?livD)
- ¢JR(V,h.)K(R, ,h.) IR, , (2.22)
3 3 i’ i
R(m,v)w = Jg(h,,R(,V)Wh, + eg(n,RE, VWA
i
- > > > > > > > > >
= )Jg(n,R(h;,w)V)h; - eg(w,R(n,v)n)n
i
> > > > > >
= eZ{3VE'K(w,v) - 3V;K(hi,v)}hi + {VEK(W,V)
i i
- Zrwpt - dvaupt) - JR(VADRGLADIN . (2.23)

1

Equations (2.20) and (2.21) are the classical equations of Gauss

and Codazzi, and are derived in Appendix I.

Equation (2.22),on
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the other hand, is a new result made possible by the introduction
of the deformation vector field. 1In it, the implicit deformation
dependence of V;K is balanced by the terms that depend
explicitly on B

The Ricci tensor, S , of space-time is obtained by con-

tracting the curvature, R
ST,V = Jgh; ,RAE,DN + eg(n,RE,HV) (2.24)
i

and its components may be written in the expanded forms

S(4,v) = 3s(a,v) - gK(G,é)ZK(ﬁi,Ki) + v;K(ﬁ,%)
i
- %T(3$D* - 3y3%D*) , (2.25)
-+ > > ’ > >
$(u,n) = eJ{3v>k(h,,h,) - vy K(u,h)} (2.26)
1 ) 1
> > > > > > > >
S(n,n) = —.Z.K(hi,hj)K(hi,hj) + e)J{VzK(h, ,h;)
i,] 1
l"'>'+ J._3,_>,L
- Se(hh.D VgihiD Yy, (2.27)
> . . . . .
where 3S(u,v) is the Ricci tensor associated with 3R .

Contracting again yields the Ricci scalar:

s = Js(h,,h,) + es(n,n)
S 1 1
1
— 3a _ > > > > P~ > >
S eizj{K(hi,hj)K(hi,hj) + K(hi,hi)K(hj,hj)}
14
> o _1__+—>'L_3 > g
+ 2§{v;x(hi,hi) Sc(h;h;D VﬁihiD )y, (2.28)

in which 3s = J3s(h ,h,) .
i
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Substituting (2.25) into (2.22) and (2.23) gives, respectively

R(n,V)n = -eJ{s(V,h) - 3s(V,h,)
i
> > > > > o > > >
+ s%(K(v,hi)K(hj,hj) - K(v,hj)K(hi,hj))}hi ; (2.29)
R(A, VW = e] {37 K(w,V) - ok (h V)R, + {S(W, V) - 35(w,)
i i
+ ] (k(w, VKA B) - RGwAORE,A I . (2.30)
i _

Thus, once the hypersurface metric, 3g , and the extrinsic cur-
vature, K , have been determined, the only new (independent)
data needed to complete the specification of R from within a
given hypersurface are the hypersurface components, S(E,?) , Of
the space-time Ricci tensor.

If all the components of the space-time curvature are known,
then they can be used to change the order of multiple covariant
derivatives, allowing the calculation of quantities that would
be otherwise inaccessible. I shall give a few examples which

. . . >
are of later importance. The simplest example is VE3VGV :
3o, _ > > > >
> = V> -
Vn Vﬁv Vn(VEv XK(u,v)n)

> > > - - > > > 5> > >
= R(n,u)v + VGVKV + YV > >y - V—ﬁK(u,v)n - K(V—ﬁu,v)n

[n,ul

> > > > > >
K(u,v;v)n - K(u,v)v;n

> > > > > > > > > >
= ) {3 K(v,0) - 3vak(h;,u)}h, - eJK(u,h)K(v,h)n
i i i
1 -> 1 > 41> - 1 - 1 > 4 -
+ VG(Brisiv + 5TvD'n + Vzn) + BTV£+*EV + STub” Vv

D
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1 > - 1 > > > > 1 - -
-{Br(uVD‘L - 3VGVD'L) + BTK(£B¢u,v) + K(Van,v) + BIK(u,kglv)
- > > 1 > e L7
+ K(u,vzn)in + e—DTK(u,V)]Z-hiD h,
> > > > 1 -> 1 > 4 > > >
= eZ{3Vﬁ'K(V,u) - 3V;;K(hi,u)}hi + BT3VG£B¢V - eBer ZK(u,hi)hi
i i i
> > > 1 - 1 ->_4 > > > 1 > i1~
- =3 - e = 3
EVS(JZ_K(V’hi)hi) + &3 Vkﬁﬁv e=xuD :ZLK(v,hi)hi + F=ivavD'n
> o > > > 1 > > o> 1o
+ eZK(u,hi)K(v,hi)n + eErK(u,v)ZhiD h,
i i
> > > > > > > > >
= e§{3VﬁiK(v,u) = 3veK(h,,u) - VyK(v,h;) - K(3v3v,h.) th,
1 3 > 3 > 3 > 4>
+ Br{ VEELGV + VG£5¢V + SVavD n}
+ eE] (B D'R@E,Y) - otk D) - Vot k@3B OIE, . (2.31)
i

Before proceeding to more complicated examples, I must
digress for a moment to establish new notation. Let T be an
arbitrary tensor field on M' , and let Tco be the associated
covariant tensor. I shall denote by IT the tensor field on M
that has the same type as T and whose covariant components

are defined by

(nT)co(ﬁ,ﬁ,...) = Téo(n(ﬁ),n(%),...) X (2.32)

We already have 1I3g = 3g and 1K = K . By assuming that 3v

has the generalized action

>

3v§v = 3y 1 (V) , (2.33)

1 ()

we obtain, in addition, 13R = 3R and 1u3s = 35 . This
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assumption is necessary in order to avoid ambiguities.

I shall also adopt a simplifying notation for the hyper-
surface derivatives of hypersurface tensors. Let T = IT be an
arbitrary covariant hypersurface tensor field. Then the tensor

field T will be defined by

1

T, (0;V,W,...) = 3vaT(V,W,...) , (2.34)

1 i

the tensor field T by

>

T (X,0;V,W,...) = 3y

2

and so on for higher derivatives. By virtue of (2.33), all of
these fields satisfy mry = T, o, 4 € w .
Repeated application of the techniques used in the derivation

of (2.31) now yields the following additional examples:

v;xl(§;3,$) = <ns>1<$;a,z> - 331(%;E,$)

+ eg{K(Ki,Ki)Kl(§;ﬁ,$) + K(E,$)K1($;Ki,ﬁi) + K(w,B)K, (B, 74,9)
+ K(K,El)[xl($;$,ﬁi) - Ky (hw, ¥+ K(%,Ki)[xl(ﬁ;%,ﬁi)

- k(B %, W1 + SAD s @, - 3@, + eK(E,$)§K(Ki,Ki)}
+ E%TE{GD‘K($,K1)K($,Ki) + $D*K($,Ki)K(G,ﬁi)

- B0t R, RT,R) + K@ DRE,E )T + %r{§E$D* - W3v,vD*

_3—>+l+3 ++¢_3+”>L+3 it
V%uvD V3y,3VD v$qu V3g,3uD } , (2.36)



V23R(G, V)W = eg{K(G,Ki)3R(Ki,§)$ + K(v,B) 3R(4, B w

+ K(w,h,) °R(4,MA} + eg{-K2(3,$;$,ﬁi) - K, (4,w;¥,h,)

bRy @B R, (B8R ¢ K, R - KGR

+ =200t 1k, (B 5Y,W) - K WY BT - LDt IR, (B 5,0

- Ky (38,0,) 1 + 2owp* [k (358,R) - k(39,8

+ %—rﬁin* [Kl('ﬁ;?z,%) - Kl('\*z;ﬁ,%)] + %—L(WJD* - 3V3§D*)K(G,ﬁi)

- é—;(ﬁ%n* - 3\735«’13*)K(x7,ﬁi) + é—dﬁﬁin* - 3vaﬁiD*)K(\7,?§)

- 3. (Vh,p* - o DK (W) - KORE,NW,H) I,

+ 209R(E, %) WD , (2.37)
v235(4,V) = sg{K(ﬁ,ﬁi)3S(gi,$) + K(V,R,)38(Q,B,) + K, (R, B ;8,9
- Kz(ﬁi,ﬁ;ﬁi,$) - Kz(ﬁi,$;3,ﬁi) + K2(3,3;Ki,ﬁi)}

+ S%TJZL{GD* [Kl(?z;?li,ﬁi) - Kl(ﬁi;ﬁi,%] + vD* [Kl(’ﬁ;ﬁi,'ﬁi)

- Kl(ﬁi;ﬁ,ﬁi)] + Eio*[le(ﬁi;ﬁ,$) - Kl(ﬁ;ﬁi,G) - Kl($;3,ﬁi)]

+ (uvD* - 3vG$D*)K(Ki,Ki) - (Gﬁln* - 3vﬁﬁin*)K(hl,$)

- (VA,D* - 3vzh;DYR(G,R) + (AR, D* - 3vy R, DHK@E,T)I . (2.38)

1
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We saw above (cf. Equations (2.20),(2.21),(2.29), and (2.30))
that R may be expressed completely in terms of 3g , K , and
IS , and hypersurface derivatives (i.e. derivatives along hyper-
surface vector fields 3,3,...) of these quantities. The compon-
ents VgR(§,W)§ and (with the use of Bianchi's second set of
identities) VER($,§)§ of VR may also be expressed in terms
of this same data. However, whenever there are two or more
derivatives in the normal direction, as in V;R(E,$)§ , more data
is required. Direct calculations, in which Equations (2.36),

(2.37), and (2.38) are used, give the following results:

V2R(B, V)X = eg{(HS)l(+i;§,§) - 35 (B 5%, V) - (n8), (B, ¥)
+ 35, (x;R, V) 1B, 4 izj{K(Ej,Kj)[Kl(Ki;§,$) - K, (%:8,,9)]
’
+ K(§,$)Kl(ﬁi;ﬁj,ﬁj) - K(Ki,$)Kl(§;Kj,Kj) + K(%,Kj)[xl($;ﬁi,ﬁj)
- 2K1(Kj;ﬁi,$)] + K(%,Kj)[Kl(§;Ki,Kj) - Kl(ﬁi;§,ﬁj)1
+ K(Ei,ﬁj)szl(Kj;§,$) - Kl($;§,ﬁj11}ﬁi

> > > > > > > >
+ eg{K(x,v)[S(hi,hi) - 3s(hi,hi) + EK(hi,hi)gK(hj,hj)]
+ K(B, B [8(X,V) - 3s(%,v) + eK(§,$)2K(Kj,Kj)J
j
<> > > > > o> > > > D
- K(x,hi)[S(v,hi) - 3S(v,hi) + QK(V’hi)gK(hj'hj)]

> > > > > o > > >
- K(V,hi)[S(X,hi) 3S(X,hi) + eK(x,hi)ZK(hj,h-)]

E J

-

> > > > >
- K(hi,3R(ﬁi,x)v) K(hi,3R(Ki,$)§) + K2(§,hi;ﬁ.,v)

1



Ch. 2 30

> > > > > o> > > > > > > ->
+ KZ(V’hi’X’hi) - K2(x,v,hi,hi) - K2(hi,hi,x,v)}n
+ AV2(I8) (%,¥) - %TQD*S(H,$) - %T$D*S(§,K)}K , (2.39)
V>R(n,v)n = J {K(h.,¥)[s(h,,B.) - 3s(h,,H.)
n i,5 J i ] i3

> => > > _ > -> e => _ 3 > =>

> > > o> > S SN P
+ ZEK(hj’hj)gK(hk'hk)] + K(hi,hj)[S(hj,v) S(hj,V)]

- K(Kj,ﬁj)[s<ﬁi,3) - *s(B,, V)] + K(ﬁj,sR(ﬁj,Ki)$)

> > >

+ K(Kj,3R(Kj,$)Ki) + KZ(Ej,Kj;hi,v) - Kz(h.,K.;K.,v)

> > > > ’ > > > >
2(Vrhjlhirhj) + KZ( i'V;hj'hj)}hi

o g

- K

_ —>—+’_L—>_,_->—>_]_->*—>—>—>
. eg{VE(HS)(hi,v) =rh;D*s(n,Vv) - %vD*s(h,,n)}h; . (2.40)

with S(E,g) defined by (2.26). In both of these equations, the
new data involved is the (deformation dependent) field VH(HS) .

By noting that

V>S5 (4,v) = n(sS(d,v)) - S(V=1,v) - S(u,V>v)
n n n

> > > > > -> -
= V2(IS) (u,V) + TS(Vzu,v) - S(Vgﬁ,v) + HS(u,VK$) - s(ﬁ,va)
= V(IS) (4,%) - LAt SR, ) - bt @A), (2.41)

all of the deformation dependent terms may be combined into the
one physical (deformation independent) field H(V;S) , yielding

results completely analogous to (2.29) and (2.30).
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The final outcome of these rather lengthy calculations is
that if we wish to characterize the geometry of space-~time from
within a given space-like hypersurface, say e(S) , then the only
a priori independent fields that we must specify on e(S) are

the hypersurface metric, 3

g , the extrinsic curvature, K , the
projection, NS , of the space-time Ricci tensor onto e(S) ,

and the hypersurface components of the covariant derivatives
along n , to all orders, of the space-time Ricci tensor: H(V;S),

H(VEVES - V,,25) , etc.. Equation (2.10) shows that K is just

V-n
the derivatige of 3g along n , and (2.25) indicates that IS
is (roughly speaking) the derivative of K along n ; so the
independent data is effectively 3g and all of its (normalized)
time derivatives.

Although all of these fields are well defined and a priori
independent of each other, physical space-time is such that only

a finite number of them need be specified in order to determine

the complete set (cf. (1.1.9)). The initial data on e(S) then

consists of 3g ‘and those derivatives of 3g along n up to
some finite order, say m , that cannot be obtained as functionals
of the others, By implication, the (m+l)th and higher derivatives
of 3g can be obtained as explicit functionals of the initial

data fields and their hypersurface derivatives.
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3. Gravitational Field Equations

The physical assumptions that I have made so far are insuf-
ficient to determine at what differential order the initial data
cuts off and dynamical equations begin. I shall assume,therefore,
that, as above, the initial data includes derivatives of 3g
along n up to and including the m—-th order. If this data is

known on e(S) , then on an infinitesimally close hypersurface,

DSt(S) , the metric is given by (cf. (2.1))

—>—>=3 > > 9__3 > > .
(u,v) golurv) + gp(Ca (u,v)) | 8t (3.1)

st
and the time derivatives up to (m-1)th order are given by similar
expressions. By iterating this process, the hypersurface metric
can be carried forward m infinitesimal steps in time, but
meSt 1is still infinitesimal. 1In order to be able to integrate
ahead a finite distance in time, we must carry all m derivatives
forward onto each successive hypersurface, thus making it equiva-
lent to its predecessor. This can be done only if the - (m+l)th

time derivative of 3

g 1is assumed to be an explicit functional
of 3g and the lower derivatives, on each of the hypersurfaces,
with the functional form being the same on all hypersurfaces.

Once the (m+l1l)th derivative has been determined on e(S) , with

the use of these dynamical equations, the m-th derivative can

be constructed on DSt(S) , and the process can be repeated

ad infinitum.
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At first glance, it might seem as though any functional of
the (m+1l) hypersurface fields that comprise the initial data,
and their hypersurface derivatives to all orders, should yield
a consistent set of dynamical field equations. However, things
aren't quite that simple. Let us suppose, for the moment, that
m =2 . The initial data on e(S) is then 3g , K , and 1S ,
and the dynamical field equations give H(VKS) as a functional

of the initial data:
H(va) = I[(VKS)[3g,K,HS,3R,3VK,3V(HS),3V3R,...] . (3.2)

If this functional is known, then, with the use of (2.41l) and
(2.26) , we can determine VK(HS) as a functional of the initial
data and the deformation vector field, B ; and by repeatedly
applying the techniques demonstrated in (2.31) we can compute

the functional form of the covariant derivative along n of each
of the fields upon which H(VES) depends. The dynamical field

equations, (3.2), thus determine their own derivative:
VoA (v28)) = vx(n(v28)) [3g,K,1S,...;B1 . (3.3)
But we also have the general result:
' > > -> -> > -
vH(I(vz8)) (8,¥) = R(N(V2S) (U,V)) - T(v28) (V3U,V)
-> -
- H(VES)(u,ng)
1

- > > > > - - - > >
= n(VES(u,v)) - VES(VEu,v) - VES(u,VKV) + BIuD‘VES(n,V)
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1 > 4 > >

+§L—VD VES(U,H)
> - > > 1 o> > >
= {v2v25(u,v) - v, >s(a,v)} - aﬁrZhiD v S(u,v)
n 1 1

1l > > > 1 -3 > >

+ BTuD VES(n,v) + BTvD Vﬁs(u,n) . (3.4

Taken together, the two terms in parentheses on the right hand
side of (3.4) constitute the fourth (normalized) time derivative

of 3g , a quantity which must not depend in any way on the

deformation, D . However, when (3.4) is subtracted from (3.3)

the resulting equation may be solved to give an expression for
. s > .
{VEVKS - VVEKS} which does depend explicitly on D . This

apparent contradiction is resolved by constraining the initial

data to satisfy functional relations which make the deformation

dependence of {VEVES -V +—>S} vanish identically. If the

V>n

n

functional form of H(VES) (Equation (3.2)) has been chosen
appropriately, then the associated constraint equations will be
sufficiently weak that IS may still be considered as part of
the initial data (i.e. IS may not be obtained as a functional

of 3g , K, and their hypersurface derivatives).

Once the primary constraint equations (introduced in the

previous paragraph) have been found, they may be used to aid in

the construction of the next covariant derivative of S along

>

n : {VEVKVKS - 3VEVVEES + 2VVEVEES} . As with {VKVES - VVEES}

this will also depend explicitly on B , and new secondary

constraipts on the initial data must be chosen to make the

34
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deformation dependent terms vanish. The calculations are exactly
analogous to those for the primary constraints, but longer due
to the extra derivative.

Finally, the fourth derivative of S along n may be
computed with the use of the dynamical equations and the primary
and secondary constraints, and once again new constraints must
be imposed on the initial data to eliminate the explicit deform-
ation dependence. Still higher derivatives will automatically
be independent of B .

Looking back at (3.4), we see that the primary constraints
place restrictions on Vas(ﬁ,g) and VHS(E,K) . Equations
analogous to (3.4) for the higher derivatives would show that
the secondary constraints restrict Vas(ﬁ,ﬁ) and VES(K,E) ’
and that the tertiary constraints (which are often also called
secondary) restrict V&S(E,K) . Thus the complete set of dynamic
plus constraint equations determines the form of all the compon-
ents of VS , as functionals of the initial data. Moreover,
since VS 1is a space—time tensor field that is completely
independent of the choice of hypersurface, e(S) , or deformation,
B , the functionals that make up its components must fit together
to form a space-time tensor field that is élso independent of
e or D , but which is nonetheless constructed from the initial
data on e(S) .

When we look at the initial data, though, we see that it

is itself derived from g and its space-time derivatives, so
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any space-time tensor field that is constructed from the initial
data (and is independent of e and D ) must ultimately be a
functional of g , R, VR , etc.. Of these latter fields, only
g and R can be constructed directly from the initial data on
e(S) , in the particular case that we are considering (m = 2).
The complete set of geometrical field equations (dynamical

equations and constraints) must therefore take the form:
vS = vslg,R] . (3.5)

Aside from the requirement that it yield a tensor field VS of
the correct form (i.e. third rank, covariant, symmetric in the
last two indices, and satisfying the contracted Bianchi identities),
no further restrictions are placed on this functional by the
physical assumptions made so far.

The calculations for other values of m (m > 1) are very
much the same as for m = 2 . If the initial data is assumed
to include 3g and its invariant derivatives along n up to
and including m-th order, then the dynamical equations give
the (m+1l)th derivative as a functional of the initial data.
Higher derivatives of 3g are then obtained by differentiating
the field equations, and the deformation dependence of the
invariant terms (space-time tensors) is eliminated by imposing
constraints on the initial data. Although the sequence may
terminate earlier, there are, in general, m + 1 orders of

constraint equations. When the dynamical equations and the



Ch. 2 37

constraints are all satisfied, derivatives of g to all orders
may be computed, and the system of equations is integrable.

The purpose of the constraints is to guarantee that the
predicted geometry of any future hypersurface, Dt(S) , depends
only on the initial data defined on e(S) , and not on the
sequence of intermediate hypersurfaces used in the time integra-
tion. Their net effect, however, is to supplement the dynamical
equations, building them up into a set of covariant equations in
the space-time fields, g , R, VR , etc., in which the highest
derivative of g is of (m+1l)th order and enters linearly

(cf. (3.5)).

4. The Einstein Vacuum Equations

Throughout modern physics it is assumed that dynamical
systems are characterized completely by their instantaneous
"coordinates" and "velocities", with their "accelerations" being
determined by dynamidal equations. For the geometrical field
theory being discussed in this chapter, the coordinates are the
components of 3g on e(S) , and the velocities are the compon-
ents of K ; so in this section I shall investigate the class
of theories for which m =1 .

As outlined above, the dynamical equations must take the

form

ns = ns[3qg,k,3R,3vK,...] . (4.1)
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Once this functional has been chosen, it may be used with (2.25)
to find VKK in terms of the initial data and the deformation
vector field D , and with (2.36),(2.37),(2.38), and other similar
equations to compute VK of each of the other fields upon which
IS depends. Knowing all these derivatives, we can use the chain
rule to compute VK(HS) .

On the other hand, though, equation (2.41l) gives

v2(18) (F,%) = vas (3, V) + SADS(E,Y) + £vprs(E,R) . (4.2)

Subtracting from this the expression obtained from (4.1) for

VB(HS)(E,g) yields an equation that may be solved for VES(E,3) :
v2S(4,v) = v2s03g,K,3R,3vK,...;D1 (4,V) . (4.3)

Because VES may be constructed directly from g , it is clear
that the right hand side of (4.3) must actually be independent

of D ; but an examination of the terms in (2.25),(2.36),(2.37),
and (2.38) that depend explicitly on D shows that no matter how
the functional (4.1) is chosen, its derivative, VE(HS) , wWill
not have (explicitly) deformation dependent terms of the form
%TGD*T(§) and %T$D*T(ﬁ) (with T independent of D ) capable
of cancelling the last two terms in (4.2). The only way in which

the deformation dependence in (4.3) can be eliminated is thus

to constrain the initial data to satisfy

K(v,h.)} =0 , (4.4)

>y L 3 > > _ 3
s(n,v) = sZ{ v;x(hi,hi) Vﬁi i

1
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and to choose the functional (4.1) so that its derivative, VK(HS),
is completely independent of D .

The constraints (4.4) serve to limit the configurations
of the initial data fields on e(S) . However, there is nothing
special about this particular space-like hypersurface, so equa-
tions (4.4) should also be satisfied on each subsequent hyper-

surface, Dt(S) . To this end I require that

a(s(n,v) =0 (4.5)
which leads, through a straightforward calculation, to

V28 (R,V) + %rgﬁin*{g(z,ﬁi)scﬁ,ﬁ) - eS(V,R)) =0 . (4.6)
Since this must be satisfied for all choices of D , I find that

vzs(K,G) = 0 (4.7)
and

1S (u,v) = ¢3g(u,v)s(n,n) . (4.8)

With the use of (2.25) and (2.27), equation (4.8) can be solved

to give
ns(a,v) = % 39(.3,3){Z3S(Ki,ﬁi) - e 7 [K(Ki,ﬁi)x(h’.,_ﬂ.)
i i,3 3
> > o>

Using (2.25) and (2.38), it can then be shown that

VE(HS)(E,$) =0 (= VESQG,G)) . (4.10)
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Derivatives of S in directions parallel to the hyper-

surface are given by
3va(Is) (U,%) (= v2s(u,V))
= % 3g(U,v){w3s - 2¢ ¥ [3v=k(h,,h.)R(h.,hH.)
i3 w i"i 373

_ 3 > > > > .
VaK(hi,hj)K(hi,hj)]} ; (4.11)

however, the contracted Bianchi identities for S8 tell us that

these must vanish:

(]
I

ZV+ S(K.,g) + eV+S(E,$) - %38
3 hi i n

> -> > > >
EVEiS(hi.V) - %V{(4/3)§S(hi'hi)}

3u. Ty 3y, > >
g{ Vhi(ns)(hi,v) (2/3) 3vy(us) (hy,h,)}

_;+3 3 > > > > _ 3 > > > >
g{ sv3S + e%[ VzK(hi,hi)K(hj,hj) v;K(hi,hj)K(hi,hj)]}

i

~Y3us > >
g VV(HS)(hi,hi) . (4.12)

Now it is well known that any symmetric, second rank tensor with
vanishing covariant derivative must be proportional to the metric

tensor, so we finally obtain the dynamical equations
(ms) (4,¥) = -a3g(&,v) (4.13)

with A a constant on e(S) . Equation (4.10) indicates that
A must also be a constant in time; and (4.8) now reduces to

the secondary constraint:
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S(n,n) = -eA 3 (4.14)

When collected together, equations (4.4),(4.13), and (4.14)
are quickly recognized as Einstein's vacuum equations for the

gravitational field (with the cosmological term):
S(U,V) = -ag(T,V) . (4.15)

For the restricted set of initial data fields, 3g and K , they
are the only field equations capable of unambiguously propagating
the metric of space forward in time.

A much shorter, but less instructive, derivation of these
same equations follows from the conclusions of Section 3 of this
chapter. They indicate that the Ricci tensor S must be an ex-
plicit functional of tensors formed from g and its first deriv-
atives (since m =1 ). But it is impossible to form any tensor

field from the first derivatives of g , so we must have
S = slgl ' (4.16)

which leads immediately to (4.15).

It is also interesting to note that even if we were willing
to add @S to the initial data (cf. Section 3) we would be
frustrated in all attempts to do so. Because g and R are
both of even rank, any non-trivial functional of these fields
must also be an even rank tensor. But VS is a third rank

tensor, so the only solution to (3.5) is
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Vs = 0 ’ (4.17)

which leads us once again to the field equations (4.15).

5. Metric Signature, and Causality

Throughout the foregoing discussions the sign & of g(ﬁ,g)
has been left undetermined, but definite. Whether ¢ 1is +1
or -1 makes little difference to the form of the field equations.
However, if g 1is to give rise to the (partial) time ordering of
physical events that is demanded by (1.1.2), then we must make

the standard assignment:
e = -1 . (5.1)

More pragmatic reasons for making this choice are provided by
the empirical successes of special relativity and Maxwell's
theory of electromagnetism.

Our original motivation for introducing the field g was
to induce a positive definite metric on each space-like hyper-
surface of space-time (the term "space-like" being defined in
(1.1.3)), and if we had decided that ¢ = +1 , then every hyper-
surface of space-time would have had such a metric. Starting
with the initial space-like hypersurface, e(S) , any deformation
vector field, B » would have then led to a sequence of hyper-
surfaces Dt(S) with induced Riemannian metrics. But with the

locally Minkowskian metric of physical space-time, the field
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D is severely restricted by the requirement that both B" ana
B* be smooth. This is illustrated by the following example.

Let M be a space-time endowed with a locally Minkowskian
metric g that satisfies some known set of (predictive) field.
equations; let M' be an open cell in M ; and let o' be a
space-like hypersurface of M' which extends to a space-like
}hypersurface o of M . Then, just as in Section 1, it is
always possible to generate a parameterized family of space-like
hypersurfaces Oy by deforming ¢ along a smooth vector field
D on M . For the purposes of this example I shall choose B

such that on o' it satisfies D* > 0 , and on o\o' its per-
pendicular part vanishes. I shall denote the portion of O
that does not coincide with ¢ by of (ol = (ot\Jo)\o ) .

This is illustrated in Figure 5.1. It follows immediately from
the above assumptions that for each point x of oé , and for
all t , every past (future) directed time-like path through
X intersects o' and each of the intermediate surfaces Ué '
0 <s <t (cf. (1.1.9)).

In conjunction with the field equations, the initial data
induced on ¢ can be used to predict what the geometry of each
of the subsequent hypersurfaces o is. The fields predicted

t

to exist on o¢! , however, depend only on the initial data

]
t
defined on o¢' and are independent of the field configurations
on o\o' . Without this result, one could not make confident

predictions about the future (or past) without first gathering
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g = g!
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Figure 5,1 Every past directed time-like path through x

(broken lines) intersects o' and each of the intermediate

space-like hypersurfaces Gé .

44
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information about the entire present universe, rather than just
some local neighbourhood.

Conversely, if the fields on oé are to be independent
of the initial data on o\o' , then the deformation vector field
D must (1) satisfy D* =0 on o\5' , and (2) leave each of
the hypersurfaces O space-like. This latter condition is
assured by requiring that both D" and D' be smooth fields.



