CHAPTER 1

INTRODUCTION

This thesis is a theoretical investigation of the fundamental
nature and form of the physical world. Holding fast to the belief
that the phenomena we perceive are manifestations of some excep-
tionally coherent and conceptually simple mathematical structure,
I have placed the emphasis throughout on philosophical ideas
rather than on phenomenological details. Elementary notions of
time and evolution are shown to place significant constraints on
the geometric structure of space-time, yielding, in the simplest
case, a new derivation of general relativity. Geometrical‘field
theory need not be fundamental, however; and preliminary arguments
are given to support the conjecture that all of field theory,
including gquantum phenomena and particle physics phenomenology,
is subordinate to and derivable from the unconstrained topological

structure of space-time.

1. First Principles

Tightly bound into our modern world-view are several
intuitive notions regarding time, space, space-time, and evolution.
These constitute a (still evolving) set of guiding principles
that we feel should be embodied in any reasonable physical theory.

Recognizing that they are subject to change and personal
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differences, I shall place particular emphasis, in my statement

of these principles, on our perception of the world rather than

on the world itself.
1.1 Uniqueness - All of the physical phenomena that we perceive
are manifestations of a unique and definite structure, which
I call the world.
1.2 Time - There is a natural partial ordering for the phenomena
that we are capable of perceiving (henceforth called events).
If two events are ordered, then one lies either to the future
or to the past of the other, and they are said to be time-
ordered. A future directed time-like path from an event a to
a future event b is a time-ordered set of events,
T(a,b) = {a,...,b} , which is maximal in the sense that the
addition of any event, x , that lies neither to the past of a
nor the future of b would necessarily destroy the time-order-
ing of T(a,b) . When given the natural topology induced by
the time-ordering, each such path is homeomorphic with the
closed interval [0,1] in R .+
1.3 The Universe - Two events, x and X, , are said to be

1

space-like if and only if there exist events x to the past

3

and x4 to the future of x such that neither x nor x

2 3
If U is a set of

4

lies to the past or future of Xq -

A summary of much of the mathematics and the notation used in

this thesis is provided in Appendix I.
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mutually space-like events that is maximal with respect to the
space-like condition, then all events in U may be simultan-
eously perceived, and U is called the universe at some time.

1.4 History -~ If Ul and U2 are two non-intersecting uni-
verses such that X € Ul lies to the future (past) of some
X, € U2 , then ul is said to lie to the future (past) of U2.
A hisﬁory is a time-ordered one-parameter family, H , of non-
intersecting universes, U(t) , t € [a,b] , which is maximal
in the sense that every event x that lies to the future of
some event in U(a) and to the past of some event in U(b) 1is
contained in U(t) for some t € (a,b) . The sequence of
universes of events of which we progressively become aware as
time passes is a history.

1.5 Space and Matter - The universe appears to us to be a
synthesis of two very different kinds of structures: space and
matter. Serving as a stable repository for matter, space is a
three-dimensional differential manifold, S , of indeterminate
global topology. Matter, the stuff that "resides in space" and
gives events their distinguishing features, is characterized by.
a countable (and perhaps finite) number of tensor fields, 3Fi ’
i€ w , of class ¢° on S .

1.6 Geometry - Defined on S is a Riemannian (ie. positive
definite) metric tensor field, 3g , of class c” . This is

manifested in the sizes and shapes that we perceive to be

characteristic features of all matter distributions.
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1.7 Continuity - As time passes, the geometry and the matter
distributions that are defined on space undergo continual change,
but these changes are never discontinuous. Denote by 3Fi(t)

and 3g(t) the matter and metric tensor fields on S that

correspond to the universe U(t) € H . Then for each x £ 8§
the tensors 3Fi(t;x) and 3g(t;x) are continuous functions
of t . Moreover, there always exists a parameterization,

t = t(t') , such that 3Fi(t';x) and 3g(t';x) are differen-~
tiable functions of t' of class C .
1.8 Space-time - There is a unique, smooth, 4-dimensional
manifold, M , which has defined on it a set of tensor fields,
Fj + J € w , such that any universe U(t) may be realized as
a submanifold, S(t) C M , with the fields 3Fi(t) , 3g(t)
induced by the embedding et:S - M ; et(S) = S(t) . Each
history is a foliation of some region M'C M , M' having the

topology of RxS . The manifold M , together with whatever

geometric structure it may have, is called space-time.

1.9 Evolution Rules - Let {S(t);t € (a,b)} be a foliation of
M' C M by space-like hypersurfaces such that for each
tO € (a,b) and all x f S(to) , every past directed time-like
path through x intersects every one of the hypersurfaces S(t),
for t € (a,to) . Then, for each t0 € (a,b) , a knowledge of
the fields 3Fi(to) and 3g(to) , and a finite number of their
derivatives with respect to t , on S(to) is sufficient to com-

pletely determine these fields on any future hypersurface S(t),
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t € (to,b) , and also to determine the fields Fj at all

points of M' +to the future of S(to) . The rules that

govern this "evolution" do not depend in any way on the field

configurations.

In brief form, the first of these principles, (1.1), asserts

my belief in the existence of an objective reality; items (1.2)
to (1.8) establish the conventional space-time-matter picture
(without clocks) as the appropriate model for the space of our
perceptions; and (1.9) stipulates that the universe must evolve

in a predictable fashion.

2. Classical Physics

It should be clear that all of the principles (1.1) to (1.9)
originate in classical (as opposed to quantum) physics, and so I
shall explore their implications only in the classical context.
The main results that I shall obtain in Chapter 2 are:

2.1 The space-time appropriate for modelling perceived (class-
ical) phenomena has defined on it a locally Minkowskian metric
tensor field, g , whose projection onto any space-like hyper- °
surface provides the metric, 3g , for that universe; and

2.2 In the absence of additional fields, the metric g satis-
fies a covariant set of local partial differential equations
in which the highest derivative of g enters linearly. When
restricted to second order, these are Einstein's vacuum gravi-

tational field equations (with the cosmological term).
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These are certainly not new results, but I believe that the novel
approach that I have used in their derivation provides some new
and useful insight into why general relativity (GR), or a
related higher order theory, should be considered as fundament-
ally correct.

Many different approaches have been used to derive GR in
the past. Einstein made use, primarily, of the classical corres-
pondence principle, requiring that Newtonian gravity emerge as
the weak field, small velocity, limit of a generally covariant
theory [1l]. A Lagrangian formulation was found by Hilbert [2],
and recently Hojman, Kucha¥, and Teitelboim (HKT) have derived
general relativity by investigating the integrability conditions
of the Hamiltonian equations of motion [3]. Several authors
have started from a quantum picture and used (Lorentz) gauge
invariance arguments to obtain the Einstein equations [4], while
Boulware and Deser have used aspects of gquantum particle physics
as their starting point [5]. A good summary of the earlier
derivations is provided by Misner, Thorne, and Wheeler [6].

The present derivation is closest, in spirit, to that of
HKT. Rather than assuming, at the outset, that the space-time
metric, g , satisfies some set of covariant field equations on
M , they focussed attention on the space-like hypersurfaces of
the space-time manifold. They sought a set of evolution rules
that would propagate data, defined on some initial hypersurface,

forward in time onto a future space-like slice, and they
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stipulated that the result should be independent of the choice
of intermediate space-like hypersurfaces used in the time inte-
gration. This much of the HKT formalism I have kept, although
I have abandoned their notation in favour of a more intuitive,
coordinate~free notation.
I deviate from HKT in the assumptions that actually fix
the dynamics. They assume that (in the vacuum case) the spatial
metric, 3g , and a conjugate super-momentum provide all the
necessary initial data, and they postulate that the equations
governing the evolution of these fields take the Hamiltonian
form [7], with the Poisson bracket algebra of the super-Hamilton-'
ian and super-momentum closing exactly as the commutator algebra
of the generators of hypersurface deformations. The philosoph-
ical motivation for these assumptions is not at all clear, and
in the first part of my derivation I eliminate them completely.
Without any new assumptions to replace them, I obtain (2.1) and
the first half of (2.2). In order to pick the Einstein equations
from the myriad of possibilities, a new assumption is necessary,
however, and I have chosen the more conventional route of restrict-
ing the initial data to be 3g and its "velocity", which is
denoted by K . The obvious advantage in choosing this data, as
opposed to that used by HKT, is that this choice obviates the
need to assume anything about a Hamiltonian structure.
Space-times with matter fields, that is, fields Fj in

addition to g , are considered in Chapter 3. It is shown,
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using the formalism developed in Chapter 2, that matter fields

are quite able to influence the evolution of the spatial geometry,
and that the space-time geometry, in turn, influences the evolution
of the matter fields. When the geometrical initial data is once
again restricted to include only 3g and K , the standard
Einstein coupling of matter and geometry is recovered - a result
that is no surprise.

The most troublesome aspect of matter, at this stage, is
that we have no philosophically appealing (non-empirical) criteria
for deciding what kinds of matter fields should be considered, nor
what equations they should satisfy (aside from the geometric con-
straints mentioned above). Many attempts have been made to
construct unified field theories using alternative (non-Riemannian)
geometries, and so obtain a geometric picture of electromagnetism
or other kinds of matter fields. But these theories can always
be reformulated in terms of Riemannian geometry plus tensor fields,
making the physical significance of the alternative geometries
uncertain at best.

Rainich [8], and later Misner and Wheeler [9], showed that
the electromagnetic field need not be considered as something in
addition to the metric, however, since it could actually be
extracted from a suitably constrained space-time metric. A short
discussion of this "already unified" theory of gravitation and
electromagnetism is presented in Chapter 3. A somewhat different

interpretation of the Misner - Wheeler results is then proposed
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and it is argued that, if all primary physical measurements are
measurements of the metric geometry of space-time, then all
matter fields, not just the electromagnetic field, must leave
distinctive imprints in the space-time geometry, from which all
of the observable characteristics of the various fields may be
recovered. Fields which do not leave such distinct imprints
could be eliminated from consideration, reducing the arbitrari-

ness of the theory eventually adopted.

3. Quantum and Particle Physics

While classical field theory, and general relativity in
particular, provides a very elegant and simple formalism for
describing some of the features that we perceive to be charac-
teristic of the world, it is unable to give us any insight into
the nature or origin of gquantum phenomena. It cannot tell us
what kinds of (quantum) particles the world is made of or how
they interact with each other. ©Normally, it is just assumed that
quantum field theory (QFT) is the correct formalism to use when
investigating quantum effects; and the particular particles that
are known to exist are described with the use of phenomenological
models, which are constantly being updated.

I find this situation highly unsatisfactory on two counts:
(1) there is no compelling logical rationale (aside from its
empirical successes) to indicate that QFT (or even ordinary QM)

is a reasonable formalism to adopt; and
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(2) the particle physics phenomenology we adopt has no philo-
sophical basis to guide us in our search for a fundamental theory.
At the same time, though, I cannot help but be impressed by the
remarkable achievements of gquantum theory - achievements that
must indicate to even the strongest opponents of quantum mechanics
that there is something correct about this inscrutable formalism.
Why does quantum theory work? What are the guiding prin-
ciples from which it follows? How can we replace particle physics
phenomenology by fundamental theory? In Chapter 4, a radically
new ané strikingly simple view of the world is presented, which
I believe may eventually provide satisfying answers to all of
these questions. Carrying to its logical conclusion Einstein's
lead in removing restrictive assumptions about the structure of

space-time, it is proposed that the objective world underlying

all of our perceptions is a 4-dimensional topological manifold,

W , which has no physically significant geometry or field struc-

ture, but instead an unconstrained (and extremely complex) global
topology. Direct perception of the detailed structure of W
would be analogous to observing all of the virtual particles in
the quantum mechanical vacuum, which is clearly impossible. But
many characteristic features of the topology of W are percep-
tible. These we interpret as fields (metric and quantum fields)
on a topologically simple 4-dimensional manifold, that we call
space-time. Our conventional space-time thus emerges, in this

picture, as a replacement manifold for the objective world, W ,
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with the fields on space-time capturing as much information about
the topology of W as possible (but not nearly all of that
information) .

The only restriction placed on the form of W is that it
must be a 4-dimensional topological manifold. No additional
physical laws are necessary, or even allowed, and therein lies
the great beauty of this new world-view. Although this work is
still very preliminary, it is argued that (an improved version
of) quantum field theory and all of the phenomenology of the
elementary particles should follow directly from a detailed study
of the topology of 4-manifolds. The space-time geometry emerges
in a natural way, yielding an intuitive understanding of the semi-
classical coupling of gravity and matter first proposed by
Mgller [10], and indicating most emphatically that gravity should
not be considered as another guantum field.

Unfortunately, due to the extreme difficulty of the mathe-
matics involved and the attendant paucity of knowledge about
three- and four-dimensional manifolds, it is not possible, at the
present, to make testable predictions based on this new world-view.
The potential for a great wealth of predictions is there, however,
and I can only hope that the prospect of applications in funda-
mental physics will stimulate mathematicians to develop the

relevant tools more rapidly.



