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ABSTRACT

The laws of physics are viewed as mathematical statements
which should follow from some set of fundamental principles.
Included amongst these principles are basic notions of space, time
and, since the development of relativity theory, space-time. 1In
the first part of the thesis a traditional world-view is adopted,
with space-time a topologically simple geometrical manifold,
matter being represented by smooth classical fields, and space a
Riemannian submanifold of space-time. Using a completely coor-
dinate-free notation, it is shown how to characterize the space-
time geometry in terms of fields defined on 3-dimensional space.
Accepting only a finite number of the fields induced on space as
independent initial data, a procedure is then given for construct-
ing dynamical and constraint equations which will consistently and
unambiguously propagate these fields forward in time. When the
geometrical initial data is restricted to include only the hyper-
surface metric, 3g , and the extrinsic curvature, K , the
resulting dynamical and constraint equations combine to form the
Einstein gravitational field equations (with the cosmological term).

This is a new and very direct approach to general relativity,
which shows quite clearly that the raison d'étre of the Einstein
field equations is to propagate the spatial metric forward in time
in a consistent fashion. Higher order gravitational equations

cannot be ruled out, however, nor does this investigation of the
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space-time geometry provide the basis for a theory of matter. 1In

an attempt to remove some of this arbitrariness, it is conjectured

that matter fields are not observed directly, but only indirectly
through their influence on the space-time geometry. This would
imply the existence of a "super" already unified theory, modelled
after the Misner - Wheeler already unified theory of gravity and
electromagnetism [9], and it would provide an intuitive physical
argument for the correctness of the Einstein equations.

The problem of synthesizing gravitational and gquantum physics
is approached by adopting a new and radically different world-view.
It is proposed that the objective world underlying all our percep-
tions is a 4-dimensional topological manifold, W , with no
physically significant field structure, but instead an unconstrained
and extremely complex global topology. Conventional space-time,
with its geometry and quantum fields, is then a topologically
simple replacement manifold for W , with the fields on space-
time replacing the topological complexities of W . A preliminary
outline of the correspondence is presented, using as its basis a
remarkable similarity between a natural graphical representation
of W and the Feynman graphs of quantum field theory. The tech-
nical problems are formidable, but if they can be overcome then
this theory may be able to explain the origin of guantum phenomena

and the detailed phenomenology of the elementary particles.
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v IX 48 part of the marntyrdom which 1 endure fon the
cause o4 the Truth that there are seasons of mental weakness,
when Cubes and Spheres §Lit away into the background of
scance-possible existences; when the Land of Three Dimensions
seems almost as visionarny as the Land of One on None;
nay, when even this hard wall that bars me from my greedom,
these very tablets on which T am wniting, and all the
substantiol realities of Flatland itself, appear no betten
than the offspring of a diseased imagination, on the baseless

gabsric of a dream.

Edwin A. Abbott
From Flatland
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CHAPTER 1

INTRODUCTION

This thesis is a theoretical investigation of the fundamental
nature and form of the physical world. Holding fast to the belief
that the phenomena we perceive are manifestations of some excep-
tionally coherent and conceptually simple mathematical structure,
I have placed the emphasis throughout on philosophical ideas
rather than on phenomenological details. Elementary notions of
time and evolution are shown to place significant constraints on
the geometric structure of space-time, yielding, in the simplest
case, a new derivation of general relativity. Geometrical‘field
theory need not be fundamental, however; and preliminary arguments
are given to support the conjecture that all of field theory,
including gquantum phenomena and particle physics phenomenology,
is subordinate to and derivable from the unconstrained topological

structure of space-time.

1. First Principles

Tightly bound into our modern world-view are several
intuitive notions regarding time, space, space-time, and evolution.
These constitute a (still evolving) set of guiding principles
that we feel should be embodied in any reasonable physical theory.

Recognizing that they are subject to change and personal
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differences, I shall place particular emphasis, in my statement

of these principles, on our perception of the world rather than

on the world itself.
1.1 Uniqueness - All of the physical phenomena that we perceive
are manifestations of a unique and definite structure, which
I call the world.
1.2 Time - There is a natural partial ordering for the phenomena
that we are capable of perceiving (henceforth called events).
If two events are ordered, then one lies either to the future
or to the past of the other, and they are said to be time-
ordered. A future directed time-like path from an event a to
a future event b is a time-ordered set of events,
T(a,b) = {a,...,b} , which is maximal in the sense that the
addition of any event, x , that lies neither to the past of a
nor the future of b would necessarily destroy the time-order-
ing of T(a,b) . When given the natural topology induced by
the time-ordering, each such path is homeomorphic with the
closed interval [0,1] in R .+
1.3 The Universe - Two events, x and X, , are said to be

1

space-like if and only if there exist events x to the past

3

and x4 to the future of x such that neither x nor x

2 3
If U is a set of

4

lies to the past or future of Xq -

A summary of much of the mathematics and the notation used in

this thesis is provided in Appendix I.
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mutually space-like events that is maximal with respect to the
space-like condition, then all events in U may be simultan-
eously perceived, and U is called the universe at some time.

1.4 History -~ If Ul and U2 are two non-intersecting uni-
verses such that X € Ul lies to the future (past) of some
X, € U2 , then ul is said to lie to the future (past) of U2.
A hisﬁory is a time-ordered one-parameter family, H , of non-
intersecting universes, U(t) , t € [a,b] , which is maximal
in the sense that every event x that lies to the future of
some event in U(a) and to the past of some event in U(b) 1is
contained in U(t) for some t € (a,b) . The sequence of
universes of events of which we progressively become aware as
time passes is a history.

1.5 Space and Matter - The universe appears to us to be a
synthesis of two very different kinds of structures: space and
matter. Serving as a stable repository for matter, space is a
three-dimensional differential manifold, S , of indeterminate
global topology. Matter, the stuff that "resides in space" and
gives events their distinguishing features, is characterized by.
a countable (and perhaps finite) number of tensor fields, 3Fi ’
i€ w , of class ¢° on S .

1.6 Geometry - Defined on S is a Riemannian (ie. positive
definite) metric tensor field, 3g , of class c” . This is

manifested in the sizes and shapes that we perceive to be

characteristic features of all matter distributions.
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1.7 Continuity - As time passes, the geometry and the matter
distributions that are defined on space undergo continual change,
but these changes are never discontinuous. Denote by 3Fi(t)

and 3g(t) the matter and metric tensor fields on S that

correspond to the universe U(t) € H . Then for each x £ 8§
the tensors 3Fi(t;x) and 3g(t;x) are continuous functions
of t . Moreover, there always exists a parameterization,

t = t(t') , such that 3Fi(t';x) and 3g(t';x) are differen-~
tiable functions of t' of class C .
1.8 Space-time - There is a unique, smooth, 4-dimensional
manifold, M , which has defined on it a set of tensor fields,
Fj + J € w , such that any universe U(t) may be realized as
a submanifold, S(t) C M , with the fields 3Fi(t) , 3g(t)
induced by the embedding et:S - M ; et(S) = S(t) . Each
history is a foliation of some region M'C M , M' having the

topology of RxS . The manifold M , together with whatever

geometric structure it may have, is called space-time.

1.9 Evolution Rules - Let {S(t);t € (a,b)} be a foliation of
M' C M by space-like hypersurfaces such that for each
tO € (a,b) and all x f S(to) , every past directed time-like
path through x intersects every one of the hypersurfaces S(t),
for t € (a,to) . Then, for each t0 € (a,b) , a knowledge of
the fields 3Fi(to) and 3g(to) , and a finite number of their
derivatives with respect to t , on S(to) is sufficient to com-

pletely determine these fields on any future hypersurface S(t),
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t € (to,b) , and also to determine the fields Fj at all

points of M' +to the future of S(to) . The rules that

govern this "evolution" do not depend in any way on the field

configurations.

In brief form, the first of these principles, (1.1), asserts

my belief in the existence of an objective reality; items (1.2)
to (1.8) establish the conventional space-time-matter picture
(without clocks) as the appropriate model for the space of our
perceptions; and (1.9) stipulates that the universe must evolve

in a predictable fashion.

2. Classical Physics

It should be clear that all of the principles (1.1) to (1.9)
originate in classical (as opposed to quantum) physics, and so I
shall explore their implications only in the classical context.
The main results that I shall obtain in Chapter 2 are:

2.1 The space-time appropriate for modelling perceived (class-
ical) phenomena has defined on it a locally Minkowskian metric
tensor field, g , whose projection onto any space-like hyper- °
surface provides the metric, 3g , for that universe; and

2.2 In the absence of additional fields, the metric g satis-
fies a covariant set of local partial differential equations
in which the highest derivative of g enters linearly. When
restricted to second order, these are Einstein's vacuum gravi-

tational field equations (with the cosmological term).
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These are certainly not new results, but I believe that the novel
approach that I have used in their derivation provides some new
and useful insight into why general relativity (GR), or a
related higher order theory, should be considered as fundament-
ally correct.

Many different approaches have been used to derive GR in
the past. Einstein made use, primarily, of the classical corres-
pondence principle, requiring that Newtonian gravity emerge as
the weak field, small velocity, limit of a generally covariant
theory [1l]. A Lagrangian formulation was found by Hilbert [2],
and recently Hojman, Kucha¥, and Teitelboim (HKT) have derived
general relativity by investigating the integrability conditions
of the Hamiltonian equations of motion [3]. Several authors
have started from a quantum picture and used (Lorentz) gauge
invariance arguments to obtain the Einstein equations [4], while
Boulware and Deser have used aspects of gquantum particle physics
as their starting point [5]. A good summary of the earlier
derivations is provided by Misner, Thorne, and Wheeler [6].

The present derivation is closest, in spirit, to that of
HKT. Rather than assuming, at the outset, that the space-time
metric, g , satisfies some set of covariant field equations on
M , they focussed attention on the space-like hypersurfaces of
the space-time manifold. They sought a set of evolution rules
that would propagate data, defined on some initial hypersurface,

forward in time onto a future space-like slice, and they
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stipulated that the result should be independent of the choice
of intermediate space-like hypersurfaces used in the time inte-
gration. This much of the HKT formalism I have kept, although
I have abandoned their notation in favour of a more intuitive,
coordinate~free notation.
I deviate from HKT in the assumptions that actually fix
the dynamics. They assume that (in the vacuum case) the spatial
metric, 3g , and a conjugate super-momentum provide all the
necessary initial data, and they postulate that the equations
governing the evolution of these fields take the Hamiltonian
form [7], with the Poisson bracket algebra of the super-Hamilton-'
ian and super-momentum closing exactly as the commutator algebra
of the generators of hypersurface deformations. The philosoph-
ical motivation for these assumptions is not at all clear, and
in the first part of my derivation I eliminate them completely.
Without any new assumptions to replace them, I obtain (2.1) and
the first half of (2.2). In order to pick the Einstein equations
from the myriad of possibilities, a new assumption is necessary,
however, and I have chosen the more conventional route of restrict-
ing the initial data to be 3g and its "velocity", which is
denoted by K . The obvious advantage in choosing this data, as
opposed to that used by HKT, is that this choice obviates the
need to assume anything about a Hamiltonian structure.
Space-times with matter fields, that is, fields Fj in

addition to g , are considered in Chapter 3. It is shown,
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using the formalism developed in Chapter 2, that matter fields

are quite able to influence the evolution of the spatial geometry,
and that the space-time geometry, in turn, influences the evolution
of the matter fields. When the geometrical initial data is once
again restricted to include only 3g and K , the standard
Einstein coupling of matter and geometry is recovered - a result
that is no surprise.

The most troublesome aspect of matter, at this stage, is
that we have no philosophically appealing (non-empirical) criteria
for deciding what kinds of matter fields should be considered, nor
what equations they should satisfy (aside from the geometric con-
straints mentioned above). Many attempts have been made to
construct unified field theories using alternative (non-Riemannian)
geometries, and so obtain a geometric picture of electromagnetism
or other kinds of matter fields. But these theories can always
be reformulated in terms of Riemannian geometry plus tensor fields,
making the physical significance of the alternative geometries
uncertain at best.

Rainich [8], and later Misner and Wheeler [9], showed that
the electromagnetic field need not be considered as something in
addition to the metric, however, since it could actually be
extracted from a suitably constrained space-time metric. A short
discussion of this "already unified" theory of gravitation and
electromagnetism is presented in Chapter 3. A somewhat different

interpretation of the Misner - Wheeler results is then proposed
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and it is argued that, if all primary physical measurements are
measurements of the metric geometry of space-time, then all
matter fields, not just the electromagnetic field, must leave
distinctive imprints in the space-time geometry, from which all
of the observable characteristics of the various fields may be
recovered. Fields which do not leave such distinct imprints
could be eliminated from consideration, reducing the arbitrari-

ness of the theory eventually adopted.

3. Quantum and Particle Physics

While classical field theory, and general relativity in
particular, provides a very elegant and simple formalism for
describing some of the features that we perceive to be charac-
teristic of the world, it is unable to give us any insight into
the nature or origin of gquantum phenomena. It cannot tell us
what kinds of (quantum) particles the world is made of or how
they interact with each other. ©Normally, it is just assumed that
quantum field theory (QFT) is the correct formalism to use when
investigating quantum effects; and the particular particles that
are known to exist are described with the use of phenomenological
models, which are constantly being updated.

I find this situation highly unsatisfactory on two counts:
(1) there is no compelling logical rationale (aside from its
empirical successes) to indicate that QFT (or even ordinary QM)

is a reasonable formalism to adopt; and
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(2) the particle physics phenomenology we adopt has no philo-
sophical basis to guide us in our search for a fundamental theory.
At the same time, though, I cannot help but be impressed by the
remarkable achievements of gquantum theory - achievements that
must indicate to even the strongest opponents of quantum mechanics
that there is something correct about this inscrutable formalism.
Why does quantum theory work? What are the guiding prin-
ciples from which it follows? How can we replace particle physics
phenomenology by fundamental theory? In Chapter 4, a radically
new ané strikingly simple view of the world is presented, which
I believe may eventually provide satisfying answers to all of
these questions. Carrying to its logical conclusion Einstein's
lead in removing restrictive assumptions about the structure of

space-time, it is proposed that the objective world underlying

all of our perceptions is a 4-dimensional topological manifold,

W , which has no physically significant geometry or field struc-

ture, but instead an unconstrained (and extremely complex) global
topology. Direct perception of the detailed structure of W
would be analogous to observing all of the virtual particles in
the quantum mechanical vacuum, which is clearly impossible. But
many characteristic features of the topology of W are percep-
tible. These we interpret as fields (metric and quantum fields)
on a topologically simple 4-dimensional manifold, that we call
space-time. Our conventional space-time thus emerges, in this

picture, as a replacement manifold for the objective world, W ,
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with the fields on space-time capturing as much information about
the topology of W as possible (but not nearly all of that
information) .

The only restriction placed on the form of W is that it
must be a 4-dimensional topological manifold. No additional
physical laws are necessary, or even allowed, and therein lies
the great beauty of this new world-view. Although this work is
still very preliminary, it is argued that (an improved version
of) quantum field theory and all of the phenomenology of the
elementary particles should follow directly from a detailed study
of the topology of 4-manifolds. The space-time geometry emerges
in a natural way, yielding an intuitive understanding of the semi-
classical coupling of gravity and matter first proposed by
Mgller [10], and indicating most emphatically that gravity should
not be considered as another guantum field.

Unfortunately, due to the extreme difficulty of the mathe-
matics involved and the attendant paucity of knowledge about
three- and four-dimensional manifolds, it is not possible, at the
present, to make testable predictions based on this new world-view.
The potential for a great wealth of predictions is there, however,
and I can only hope that the prospect of applications in funda-
mental physics will stimulate mathematicians to develop the

relevant tools more rapidly.
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CHAPTER 2

THE GEOMETRIC INITIAL VALUE PROBLEM

In this chapter and the next, I shall attempt to establish
very general criteria that any acceptable theory of gravity must
satisfy if it is to be compatible with the first principles
(1.1.1) to (1.1.9). The present chapter is devoted to the inves-
tigation of vacuum space-times (on which the metric is the only
fundamental field), with matter fields being added in Chapter 3.
General relativity will emerge as the simplest possible acceptable
theory in both the vacuum and general cases, and conjectural
arguments will be given in Chapter 3 to support the claim that

GR 1is the "correct" theory to use.

l.  Space-time, Space, and Its Time Evolution

I shall begin, in this section, by developing a suitable
mathematical formalism for describing the evolution of space
through space-time. The conceptual picture I shall draw is not
new, having been used by several authors [3],[6],[11] , but in
the past a coordinate representation has always been used. My
notation, here and throughout the thesis, is completely coordinate
free. Topological and geometrical concepts are thus kept to the
fore, and complete covariance is assured. For simplicity it is

assumed that space and space-time are diffeomorphic with R3 and
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R , respectively. Global topological considerations are
discussed, briefly, at the end of Chapter 3.

Let S be an open cell in 3-dimensional space; let M be
the space-time manifold; and let e:S - M be a smooth embedding.

Then it is always possible to construct a smooth map
Ey:S > CT (I ,M) , (1.1)

from S into the set of ¢ maps from the interval IG = (-6,98)

into M , such that each of the maps

Dt:S > M ; Dt(x) = (ED(X))(t) s t €I, x €S, (1.2)

§

is a smooth embedding, and
D. = e . (1.3)

The hypersurfaces so defined are neighbouring in the sense that
as t approaches t0 the hypersurface Dt(S) approaches Dt (S)

Ny 0
arbitrarily closely.

A differential description of the motion of Dt(S) through

space-time is provided by the vector valued maps

DS > T(M) ;5 B (x) € Tp, () (0

which are defined by
B.ex) = L (£(D, (x))) (1.4)
e v £ () .

for all differentiable test functions, f:M > R , and all x € S .
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As t 1is increased, the hypersurface Dt(S) is deformed contin-
uously through M , with each point Dt(x) following the trajec-
tory of the vector Bt(x).

In general, the hypersurfaces Dt(S) need not be disjoint
surfaces in M . The image space, D;(S) , could even be the

same for all of them, each map D being obtained from e by

t
composing it with a diffeomorphism of S . I shall consider,
however, only those maps E, for which D%(S)(\ D;(S) =@ for
all t ¢ I6 and s # t . This means that the hypersurfaces Dt(S)
provide a foliation of some open region M' C M which has the
topology S><I6 = R* . The vector fields 6t may now all be com-
bined to form a smooth deformation vector field, D:M > T(M) ,

defined on M' :

Bx) =B o tx)  , x¢€ D ($) . (1.5)

*

Specification of D and e uniquely determines ED ; SO in that

which follows no direct reference will be made to ED . For

convenience, I shall assume that a particular choice of e and

D has been made.
Consider now, a vector field W on S . Each of the maps

Dt may be used to push U forward onto M , yielding parallel

vector fields Dy x

the hypersurfaces provide a foliation of M' , each point in M"'

a defined on the surfaces Dt(S) . Because

will have associated with it exactly one vector, thus yielding a

smooth vector field on M' , also denoted by a , which is
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everywhere parallel to the hypersurfaces Dt(S) and satisfies
.
txu = 0 . (1.6)

(Wherever it is practical in that which follows, I shall use the
symbols G,%,%,... to denote vector fields on S or parallel
vector fields on M , and the symbols G,G,W,... to denote general
(not necessarily parallel) vector fields on M . Other symbols
will be treated individually.)

Now, if M is the space-time manifold, then in accordance
with (1.1.8) it must have defined on it a set of smooth tensor
fields, Fj + J € w , such that each universe U may be realized
as a submanifold of M , with the fields of U determined by the
fields on M . 1In particular, since I want to consider e(S) as
space at some time, there must be a symmetric field g of
type (0,2) de?ined on a region of M containing e(S) , such
that the pullback e*g is a Riemannian metric on S . For the
purposes of this chapter, I shall assume that g is the only
fundamental physical field defined on M' .

Knowing e*g , it is always possible to construct a triad

field of orthonormal basis vectors, ﬁi , on S

e*g(ﬁi,ﬁj) =654 , i,3=1,2,3 . (1.7)

These can be pushed forward onto e(S) , and used there to con-
struct an operator, 1T , which projects space-time vector fields

ﬁ,%,...,ﬁ onto the hypersurface:
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> 3 o>
n1(0) = § g(U,e,h,)eh, . (1.8)

Space-time vectors defined at points of e(S) may thus be decom-

posed into parallel and perpendicular parts, even if g is

singular:
g =0"+B* |, o=@ . (1.9)

The vector field U defined above is, of course, already parallel:
o= T(A) . We may also use 1 to construct, on e(S) , a hyper-
surface metric, 3g , which will prove to be much more convenient

than e*g . It is defined by
3g(T,%) = g@", ¥ = gn(@ , 1)) . (1.10)

The definition of space-like given in (1.1l.3) guarantees
that if e(S) 1is space-like (which I assume to be the case),
then any hypersurface obtained from e(S) by a smooth infinites-
imal deformation is also space-like; but this property does not
necessarily hold for finite deformations. I shall assume, however,
that D has been carefully chosen so that all of the hypersur-
faces Dt(S) are space-like, deferring until later a discussion
of the constraints imposed on D in order to assure this. With
this assumption, it is clear that the pullback, 3gt = D, 49 , of
g onto S , corresponding to each of the hypersurfaces Dt(S) ’
is positive definite; and both 1 and 3g may be extended

smoothly to all of M' . Of course, this extension is not unique,
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depending as it does on the particular choice of D .

2. Initial Data

The tensor field 3gt provides a complete description of
the Riemannian geometry of space at the time labelled by t .
As t 1increases, the field changes continuously, its rate of

change being given by

d__ 3 > > o > >
e ( gt(u,V)) (x) = txg(u,v) (D, (x))
- 3, > ' > >
Exu g (u,v) (D (x)) + tgag(u,v) (Dt(X)) ’ (2.1)
where B” = H(B) ’ 5* = B - B" , and 3,3 on the left are arbi-
trary vector fields on S , and on the right they are the corres-

ponding induced fields on M , which satisfy iﬁﬁ = £53 = 0 .
Considering just the "initial surface", e(S) , we see that once
B" has been chosen, the first term on the right is uniquely
determined by the hypersurface metric, 3g , which is equivalent
to e*g . The second term, however, is not determined by known
data, nor is it invariantly defined, depending as it does on the

=g R
component, D

, of the deformation vector field that cannot (yet)
be specified from within the initial surface. Higher order deriv-
atives, constructed by iterating (2.1), depend on D in still
more complicated ways.

All by itself, the field 3g , restricted to e(S) , provides

insufficient data to determine the geometry of space at any other
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time; but the only other tensor fields available on e(S) are the
time derivatives discussed above. If we are to be able to con-
struct the dynamical theory that is demanded by (1.1.9), then

we must find some way of extracting the deformation dependence
from these time derivatives to leave behind invariantly defined
physical data. It is not difficult to see that this separation

can only be achieved if B* can be expressed in the form
D* = p'n , (2.2)

where D% is a scalar field (which can be specified from within

e(S)) and n is a perpendicular vector field that is completely

determined on e(S) by g and the embedding, e . (In Newtonian
gravity A would be an absolute time-like vector field, but that
is excluded here by the assumption that all fields are dynamic.)

Assuming such an n , the offending last term in (2.1) can be

written in the form

£2.9(T,9) = B g@,¥) - gx.8,9) - g(@,.9)

= D'R(g(U,¥)) - g(D*4xd - W*A,V) - g(4,p' £3v - ID'R)

= D't2g(d,v) . (2.3)
The tensor 3g' , defined by

39" (6,9 = Lzg (B, 1) (2.4)

is thus the invariantly defined piece of initial data that allows
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us to complete the specification, from within e(S) , of the

rate of change of 3g

TeCg ) | g =t a@D) + D3 @, . (2.5)

The fields n and 3g' , just like T and 3g , may be
extended to all of M' by constructing them on each of the hyper-
surfaces Dt(S) . Equation (2.4) remains the defining equation
for 3g' , while n always satisfies T(R) = 0 .

As stated above, the field n must be completely deter-
mined by the space-time field g and the set of embedding maps,
Dt . Since space is of co-dimension one in space-time, it is
possible, using only the properties of g assumed in the previous
section, to uniquely determine the direction of n  at each point
of M' . However, in order to fix the magnitudes of these vectors
we must make the additional assumption that g is everywhere
non-singular. With this condition, n may be chosen to be a

field of unit vectors that are everywhere normal to the hyper-

surfaces Dt(S)

g(g,ﬁ’) = g ’ e = x1 ;
-> - (2.6)
g(n,n(¥)) =0 for all T € T .

The sign, ¢ , of g(ﬁ,ﬁ) need not be specified at this point,
but must eventually be set to -1 1in order to accommodate Dirac
spinors and to prevent space-like events from being causally

related.
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Being non-singular, g is a {(pseudo-)Riemannian metric on
M' . It uniquely determines a covariant derivative, V , while
the hypersurface metric, 3g , determines a covariant derivative,

3V . These satisfy

>

U(g(V, W) = g7V, W) + g¥,vgi)

u(3g(v,w) = 3g(3vv,w) + 3g(¥, 3w, F(2.7)

3vsv = M (3v=%) ]
u u )

and are uniquely determined if their torsions are set to zero:

[6,91 = vp¥V - vo0 [G,%) = 3753 - 3vei (2.8)
They are related by

VeV = 3V + K@@, V)R, (2.9)
wﬁere K(ﬁ,ﬁ) = K(§,ﬁ) = K(H(ﬁ),n(ﬁ)) is the extrinsic curvature

tensor. K 1is actually not new, since

3" (U, V) = tzg (@) ,1()

n(g (@ ,1(N) - glz(m@®), 1) - g@@ (1))

9V @R AD) + g,V 30

- 9@,y 1) - g(v 3 1@, 5

- 2¢K(U,V) ) (2.10)
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The second line, here, is obtained with the use of Leibniz' rule
for t ; the third line uses Leibniz' rule for V and the first
half of (2.8); and the fourth line again uses Leibniz' rule for

Vv and the second half of (2.6). This repeated use of Leibniz'

rule and the free interchange of Lie and covariant derivatives,

made possible by equations (2.8), will characterize many of the

calculations that follow.

Also used extensively are the following relations. Let

U be a parallel vector field: H(E) = U . Then
[n,a] = %T(EBLE + up*n) . (2.11)

It is obvious that both LBﬁ and £Bu3 are parallel; but this

implies that £3¢3 = £BG - £B"ﬁ is also a parallel vector

field. Thus
> > 1 -
I([n,u]) = =tz 0 . (2.12)
D D
Since n is a unit vector it must satisfy
g(8,v28) = g(A,v3R) =0 (2.13)
so the perpendicular part of (2.11), taken with (2.8), gives
£

g(#,va8) = el Dt . (2.14)

Now let ﬁi’ i=1,2,3, Dbe a triad of orthonormal parallel

T I will use the notations Eﬁﬁ and [ﬁ,@] interchangeably.
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vector fields on M!

The quadruple (E,ﬁi) is then a vierbein for g , in terms of

which any vector field may be expanded. 1In particular

VGE = gg(vﬁg’ﬁi)ﬁi + eg(vaﬁ,ﬁ)ﬁ

= —%g(K,Vaﬁi)Ki

= - ]Z-K(ﬁ,ﬁi)ﬁi , (2.16)
VEE = gg(VEE,Ki)Ki + eg(VKK,E)E

-+ > >
= —gg(n,VEhi)hi
l - 47
= -e5T ZhiD h, . (2.17)
1

A feature of these relations that will arise repeatedly is that
any derivative along n , if it is not determined by some identity
(as in (2.13)), must depend explicitly on the deformation vector
field.

Associated with V 1is the Riemann curvature tensor, R ,

of space-time:

b

R(G,V)W = v (2.18)

Similarly, the hypersurface curvature tensor, 3R , is constructed

with the use of 3V . Its non-zero components are given by

SR(U,V)w = 3V+3Vow — 3va3vsw - 3V o> . w . (2.19)
a v v 'u [a,v]
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If we maintain the convention that 3,?,@,... are hypersurface
(parallel) vector fields, then we find that there are four dis-
tinct kinds of terms into which R may be decomposed: R(G,$)§ ’
> > > > > > > > > .
R(u,v)n , R(n,v)w , and R(n,v)n . These may be expanded, in
terms of hypersurface fields, as follows:
R(G,VIW = R, MW + (3V2K(@,w) - V2K (3,w) In
+ eJR@WEKE,E) - XE,WwK@,A) IR, (2.20)
i
> > > > > > > ->
R(U,v)n = -g§{3VGK(V,hi) - 3V$K(u,hi)}hi , (2.21)
> > > -> - >
R(n,v)n = V>V»>n - V>V>n - V > >.n
nv v n [n,v]
_ _ > > > _ _ ]__—> 17>
=V ( egK(v,hi)hi) V2 (-est h,D'h,)
1 > > 1 2 > _Lv> 17
+ eﬁrgK(£B¢v,hi)hi + e(5r) 7 VD ghiD hy
- _ > > _ ]__ > >, _ 3 >y
= E:ZL{VEK(V,hi) =r(h,vD v?livD)
- ¢JR(V,h.)K(R, ,h.) IR, , (2.22)
3 3 i’ i
R(m,v)w = Jg(h,,R(,V)Wh, + eg(n,RE, VWA
i
- > > > > > > > > >
= )Jg(n,R(h;,w)V)h; - eg(w,R(n,v)n)n
i
> > > > > >
= eZ{3VE'K(w,v) - 3V;K(hi,v)}hi + {VEK(W,V)
i i
- Zrwpt - dvaupt) - JR(VADRGLADIN . (2.23)

1

Equations (2.20) and (2.21) are the classical equations of Gauss

and Codazzi, and are derived in Appendix I.

Equation (2.22),on
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the other hand, is a new result made possible by the introduction
of the deformation vector field. 1In it, the implicit deformation
dependence of V;K is balanced by the terms that depend
explicitly on B

The Ricci tensor, S , of space-time is obtained by con-

tracting the curvature, R
ST,V = Jgh; ,RAE,DN + eg(n,RE,HV) (2.24)
i

and its components may be written in the expanded forms

S(4,v) = 3s(a,v) - gK(G,é)ZK(ﬁi,Ki) + v;K(ﬁ,%)
i
- %T(3$D* - 3y3%D*) , (2.25)
-+ > > ’ > >
$(u,n) = eJ{3v>k(h,,h,) - vy K(u,h)} (2.26)
1 ) 1
> > > > > > > >
S(n,n) = —.Z.K(hi,hj)K(hi,hj) + e)J{VzK(h, ,h;)
i,] 1
l"'>'+ J._3,_>,L
- Se(hh.D VgihiD Yy, (2.27)
> . . . . .
where 3S(u,v) is the Ricci tensor associated with 3R .

Contracting again yields the Ricci scalar:

s = Js(h,,h,) + es(n,n)
S 1 1
1
— 3a _ > > > > P~ > >
S eizj{K(hi,hj)K(hi,hj) + K(hi,hi)K(hj,hj)}
14
> o _1__+—>'L_3 > g
+ 2§{v;x(hi,hi) Sc(h;h;D VﬁihiD )y, (2.28)

in which 3s = J3s(h ,h,) .
i
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Substituting (2.25) into (2.22) and (2.23) gives, respectively

R(n,V)n = -eJ{s(V,h) - 3s(V,h,)
i
> > > > > o > > >
+ s%(K(v,hi)K(hj,hj) - K(v,hj)K(hi,hj))}hi ; (2.29)
R(A, VW = e] {37 K(w,V) - ok (h V)R, + {S(W, V) - 35(w,)
i i
+ ] (k(w, VKA B) - RGwAORE,A I . (2.30)
i _

Thus, once the hypersurface metric, 3g , and the extrinsic cur-
vature, K , have been determined, the only new (independent)
data needed to complete the specification of R from within a
given hypersurface are the hypersurface components, S(E,?) , Of
the space-time Ricci tensor.

If all the components of the space-time curvature are known,
then they can be used to change the order of multiple covariant
derivatives, allowing the calculation of quantities that would
be otherwise inaccessible. I shall give a few examples which

. . . >
are of later importance. The simplest example is VE3VGV :
3o, _ > > > >
> = V> -
Vn Vﬁv Vn(VEv XK(u,v)n)

> > > - - > > > 5> > >
= R(n,u)v + VGVKV + YV > >y - V—ﬁK(u,v)n - K(V—ﬁu,v)n

[n,ul

> > > > > >
K(u,v;v)n - K(u,v)v;n

> > > > > > > > > >
= ) {3 K(v,0) - 3vak(h;,u)}h, - eJK(u,h)K(v,h)n
i i i
1 -> 1 > 41> - 1 - 1 > 4 -
+ VG(Brisiv + 5TvD'n + Vzn) + BTV£+*EV + STub” Vv

D
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1 > - 1 > > > > 1 - -
-{Br(uVD‘L - 3VGVD'L) + BTK(£B¢u,v) + K(Van,v) + BIK(u,kglv)
- > > 1 > e L7
+ K(u,vzn)in + e—DTK(u,V)]Z-hiD h,
> > > > 1 -> 1 > 4 > > >
= eZ{3Vﬁ'K(V,u) - 3V;;K(hi,u)}hi + BT3VG£B¢V - eBer ZK(u,hi)hi
i i i
> > > 1 - 1 ->_4 > > > 1 > i1~
- =3 - e = 3
EVS(JZ_K(V’hi)hi) + &3 Vkﬁﬁv e=xuD :ZLK(v,hi)hi + F=ivavD'n
> o > > > 1 > > o> 1o
+ eZK(u,hi)K(v,hi)n + eErK(u,v)ZhiD h,
i i
> > > > > > > > >
= e§{3VﬁiK(v,u) = 3veK(h,,u) - VyK(v,h;) - K(3v3v,h.) th,
1 3 > 3 > 3 > 4>
+ Br{ VEELGV + VG£5¢V + SVavD n}
+ eE] (B D'R@E,Y) - otk D) - Vot k@3B OIE, . (2.31)
i

Before proceeding to more complicated examples, I must
digress for a moment to establish new notation. Let T be an
arbitrary tensor field on M' , and let Tco be the associated
covariant tensor. I shall denote by IT the tensor field on M
that has the same type as T and whose covariant components

are defined by

(nT)co(ﬁ,ﬁ,...) = Téo(n(ﬁ),n(%),...) X (2.32)

We already have 1I3g = 3g and 1K = K . By assuming that 3v

has the generalized action

>

3v§v = 3y 1 (V) , (2.33)

1 ()

we obtain, in addition, 13R = 3R and 1u3s = 35 . This
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assumption is necessary in order to avoid ambiguities.

I shall also adopt a simplifying notation for the hyper-
surface derivatives of hypersurface tensors. Let T = IT be an
arbitrary covariant hypersurface tensor field. Then the tensor

field T will be defined by

1

T, (0;V,W,...) = 3vaT(V,W,...) , (2.34)

1 i

the tensor field T by

>

T (X,0;V,W,...) = 3y

2

and so on for higher derivatives. By virtue of (2.33), all of
these fields satisfy mry = T, o, 4 € w .
Repeated application of the techniques used in the derivation

of (2.31) now yields the following additional examples:

v;xl(§;3,$) = <ns>1<$;a,z> - 331(%;E,$)

+ eg{K(Ki,Ki)Kl(§;ﬁ,$) + K(E,$)K1($;Ki,ﬁi) + K(w,B)K, (B, 74,9)
+ K(K,El)[xl($;$,ﬁi) - Ky (hw, ¥+ K(%,Ki)[xl(ﬁ;%,ﬁi)

- k(B %, W1 + SAD s @, - 3@, + eK(E,$)§K(Ki,Ki)}
+ E%TE{GD‘K($,K1)K($,Ki) + $D*K($,Ki)K(G,ﬁi)

- B0t R, RT,R) + K@ DRE,E )T + %r{§E$D* - W3v,vD*

_3—>+l+3 ++¢_3+”>L+3 it
V%uvD V3y,3VD v$qu V3g,3uD } , (2.36)



V23R(G, V)W = eg{K(G,Ki)3R(Ki,§)$ + K(v,B) 3R(4, B w

+ K(w,h,) °R(4,MA} + eg{-K2(3,$;$,ﬁi) - K, (4,w;¥,h,)

bRy @B R, (B8R ¢ K, R - KGR

+ =200t 1k, (B 5Y,W) - K WY BT - LDt IR, (B 5,0

- Ky (38,0,) 1 + 2owp* [k (358,R) - k(39,8

+ %—rﬁin* [Kl('ﬁ;?z,%) - Kl('\*z;ﬁ,%)] + %—L(WJD* - 3V3§D*)K(G,ﬁi)

- é—;(ﬁ%n* - 3\735«’13*)K(x7,ﬁi) + é—dﬁﬁin* - 3vaﬁiD*)K(\7,?§)

- 3. (Vh,p* - o DK (W) - KORE,NW,H) I,

+ 209R(E, %) WD , (2.37)
v235(4,V) = sg{K(ﬁ,ﬁi)3S(gi,$) + K(V,R,)38(Q,B,) + K, (R, B ;8,9
- Kz(ﬁi,ﬁ;ﬁi,$) - Kz(ﬁi,$;3,ﬁi) + K2(3,3;Ki,ﬁi)}

+ S%TJZL{GD* [Kl(?z;?li,ﬁi) - Kl(ﬁi;ﬁi,%] + vD* [Kl(’ﬁ;ﬁi,'ﬁi)

- Kl(ﬁi;ﬁ,ﬁi)] + Eio*[le(ﬁi;ﬁ,$) - Kl(ﬁ;ﬁi,G) - Kl($;3,ﬁi)]

+ (uvD* - 3vG$D*)K(Ki,Ki) - (Gﬁln* - 3vﬁﬁin*)K(hl,$)

- (VA,D* - 3vzh;DYR(G,R) + (AR, D* - 3vy R, DHK@E,T)I . (2.38)

1
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We saw above (cf. Equations (2.20),(2.21),(2.29), and (2.30))
that R may be expressed completely in terms of 3g , K , and
IS , and hypersurface derivatives (i.e. derivatives along hyper-
surface vector fields 3,3,...) of these quantities. The compon-
ents VgR(§,W)§ and (with the use of Bianchi's second set of
identities) VER($,§)§ of VR may also be expressed in terms
of this same data. However, whenever there are two or more
derivatives in the normal direction, as in V;R(E,$)§ , more data
is required. Direct calculations, in which Equations (2.36),

(2.37), and (2.38) are used, give the following results:

V2R(B, V)X = eg{(HS)l(+i;§,§) - 35 (B 5%, V) - (n8), (B, ¥)
+ 35, (x;R, V) 1B, 4 izj{K(Ej,Kj)[Kl(Ki;§,$) - K, (%:8,,9)]
’
+ K(§,$)Kl(ﬁi;ﬁj,ﬁj) - K(Ki,$)Kl(§;Kj,Kj) + K(%,Kj)[xl($;ﬁi,ﬁj)
- 2K1(Kj;ﬁi,$)] + K(%,Kj)[Kl(§;Ki,Kj) - Kl(ﬁi;§,ﬁj)1
+ K(Ei,ﬁj)szl(Kj;§,$) - Kl($;§,ﬁj11}ﬁi

> > > > > > > >
+ eg{K(x,v)[S(hi,hi) - 3s(hi,hi) + EK(hi,hi)gK(hj,hj)]
+ K(B, B [8(X,V) - 3s(%,v) + eK(§,$)2K(Kj,Kj)J
j
<> > > > > o> > > > D
- K(x,hi)[S(v,hi) - 3S(v,hi) + QK(V’hi)gK(hj'hj)]

> > > > > o > > >
- K(V,hi)[S(X,hi) 3S(X,hi) + eK(x,hi)ZK(hj,h-)]

E J

-

> > > > >
- K(hi,3R(ﬁi,x)v) K(hi,3R(Ki,$)§) + K2(§,hi;ﬁ.,v)

1
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> > > > > o> > > > > > > ->
+ KZ(V’hi’X’hi) - K2(x,v,hi,hi) - K2(hi,hi,x,v)}n
+ AV2(I8) (%,¥) - %TQD*S(H,$) - %T$D*S(§,K)}K , (2.39)
V>R(n,v)n = J {K(h.,¥)[s(h,,B.) - 3s(h,,H.)
n i,5 J i ] i3

> => > > _ > -> e => _ 3 > =>

> > > o> > S SN P
+ ZEK(hj’hj)gK(hk'hk)] + K(hi,hj)[S(hj,v) S(hj,V)]

- K(Kj,ﬁj)[s<ﬁi,3) - *s(B,, V)] + K(ﬁj,sR(ﬁj,Ki)$)

> > >

+ K(Kj,3R(Kj,$)Ki) + KZ(Ej,Kj;hi,v) - Kz(h.,K.;K.,v)

> > > > ’ > > > >
2(Vrhjlhirhj) + KZ( i'V;hj'hj)}hi

o g

- K

_ —>—+’_L—>_,_->—>_]_->*—>—>—>
. eg{VE(HS)(hi,v) =rh;D*s(n,Vv) - %vD*s(h,,n)}h; . (2.40)

with S(E,g) defined by (2.26). In both of these equations, the
new data involved is the (deformation dependent) field VH(HS) .

By noting that

V>S5 (4,v) = n(sS(d,v)) - S(V=1,v) - S(u,V>v)
n n n

> > > > > -> -
= V2(IS) (u,V) + TS(Vzu,v) - S(Vgﬁ,v) + HS(u,VK$) - s(ﬁ,va)
= V(IS) (4,%) - LAt SR, ) - bt @A), (2.41)

all of the deformation dependent terms may be combined into the
one physical (deformation independent) field H(V;S) , yielding

results completely analogous to (2.29) and (2.30).
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The final outcome of these rather lengthy calculations is
that if we wish to characterize the geometry of space-~time from
within a given space-like hypersurface, say e(S) , then the only
a priori independent fields that we must specify on e(S) are

the hypersurface metric, 3

g , the extrinsic curvature, K , the
projection, NS , of the space-time Ricci tensor onto e(S) ,

and the hypersurface components of the covariant derivatives
along n , to all orders, of the space-time Ricci tensor: H(V;S),

H(VEVES - V,,25) , etc.. Equation (2.10) shows that K is just

V-n
the derivatige of 3g along n , and (2.25) indicates that IS
is (roughly speaking) the derivative of K along n ; so the
independent data is effectively 3g and all of its (normalized)
time derivatives.

Although all of these fields are well defined and a priori
independent of each other, physical space-time is such that only

a finite number of them need be specified in order to determine

the complete set (cf. (1.1.9)). The initial data on e(S) then

consists of 3g ‘and those derivatives of 3g along n up to
some finite order, say m , that cannot be obtained as functionals
of the others, By implication, the (m+l)th and higher derivatives
of 3g can be obtained as explicit functionals of the initial

data fields and their hypersurface derivatives.
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3. Gravitational Field Equations

The physical assumptions that I have made so far are insuf-
ficient to determine at what differential order the initial data
cuts off and dynamical equations begin. I shall assume,therefore,
that, as above, the initial data includes derivatives of 3g
along n up to and including the m—-th order. If this data is

known on e(S) , then on an infinitesimally close hypersurface,

DSt(S) , the metric is given by (cf. (2.1))

—>—>=3 > > 9__3 > > .
(u,v) golurv) + gp(Ca (u,v)) | 8t (3.1)

st
and the time derivatives up to (m-1)th order are given by similar
expressions. By iterating this process, the hypersurface metric
can be carried forward m infinitesimal steps in time, but
meSt 1is still infinitesimal. 1In order to be able to integrate
ahead a finite distance in time, we must carry all m derivatives
forward onto each successive hypersurface, thus making it equiva-
lent to its predecessor. This can be done only if the - (m+l)th

time derivative of 3

g 1is assumed to be an explicit functional
of 3g and the lower derivatives, on each of the hypersurfaces,
with the functional form being the same on all hypersurfaces.

Once the (m+l1l)th derivative has been determined on e(S) , with

the use of these dynamical equations, the m-th derivative can

be constructed on DSt(S) , and the process can be repeated

ad infinitum.
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At first glance, it might seem as though any functional of
the (m+1l) hypersurface fields that comprise the initial data,
and their hypersurface derivatives to all orders, should yield
a consistent set of dynamical field equations. However, things
aren't quite that simple. Let us suppose, for the moment, that
m =2 . The initial data on e(S) is then 3g , K , and 1S ,
and the dynamical field equations give H(VKS) as a functional

of the initial data:
H(va) = I[(VKS)[3g,K,HS,3R,3VK,3V(HS),3V3R,...] . (3.2)

If this functional is known, then, with the use of (2.41l) and
(2.26) , we can determine VK(HS) as a functional of the initial
data and the deformation vector field, B ; and by repeatedly
applying the techniques demonstrated in (2.31) we can compute

the functional form of the covariant derivative along n of each
of the fields upon which H(VES) depends. The dynamical field

equations, (3.2), thus determine their own derivative:
VoA (v28)) = vx(n(v28)) [3g,K,1S,...;B1 . (3.3)
But we also have the general result:
' > > -> -> > -
vH(I(vz8)) (8,¥) = R(N(V2S) (U,V)) - T(v28) (V3U,V)
-> -
- H(VES)(u,ng)
1

- > > > > - - - > >
= n(VES(u,v)) - VES(VEu,v) - VES(u,VKV) + BIuD‘VES(n,V)
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1 > 4 > >

+§L—VD VES(U,H)
> - > > 1 o> > >
= {v2v25(u,v) - v, >s(a,v)} - aﬁrZhiD v S(u,v)
n 1 1

1l > > > 1 -3 > >

+ BTuD VES(n,v) + BTvD Vﬁs(u,n) . (3.4

Taken together, the two terms in parentheses on the right hand
side of (3.4) constitute the fourth (normalized) time derivative

of 3g , a quantity which must not depend in any way on the

deformation, D . However, when (3.4) is subtracted from (3.3)

the resulting equation may be solved to give an expression for
. s > .
{VEVKS - VVEKS} which does depend explicitly on D . This

apparent contradiction is resolved by constraining the initial

data to satisfy functional relations which make the deformation

dependence of {VEVES -V +—>S} vanish identically. If the

V>n

n

functional form of H(VES) (Equation (3.2)) has been chosen
appropriately, then the associated constraint equations will be
sufficiently weak that IS may still be considered as part of
the initial data (i.e. IS may not be obtained as a functional

of 3g , K, and their hypersurface derivatives).

Once the primary constraint equations (introduced in the

previous paragraph) have been found, they may be used to aid in

the construction of the next covariant derivative of S along

>

n : {VEVKVKS - 3VEVVEES + 2VVEVEES} . As with {VKVES - VVEES}

this will also depend explicitly on B , and new secondary

constraipts on the initial data must be chosen to make the

34

)

14
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deformation dependent terms vanish. The calculations are exactly
analogous to those for the primary constraints, but longer due
to the extra derivative.

Finally, the fourth derivative of S along n may be
computed with the use of the dynamical equations and the primary
and secondary constraints, and once again new constraints must
be imposed on the initial data to eliminate the explicit deform-
ation dependence. Still higher derivatives will automatically
be independent of B .

Looking back at (3.4), we see that the primary constraints
place restrictions on Vas(ﬁ,g) and VHS(E,K) . Equations
analogous to (3.4) for the higher derivatives would show that
the secondary constraints restrict Vas(ﬁ,ﬁ) and VES(K,E) ’
and that the tertiary constraints (which are often also called
secondary) restrict V&S(E,K) . Thus the complete set of dynamic
plus constraint equations determines the form of all the compon-
ents of VS , as functionals of the initial data. Moreover,
since VS 1is a space—time tensor field that is completely
independent of the choice of hypersurface, e(S) , or deformation,
B , the functionals that make up its components must fit together
to form a space-time tensor field that is élso independent of
e or D , but which is nonetheless constructed from the initial
data on e(S) .

When we look at the initial data, though, we see that it

is itself derived from g and its space-time derivatives, so
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any space-time tensor field that is constructed from the initial
data (and is independent of e and D ) must ultimately be a
functional of g , R, VR , etc.. Of these latter fields, only
g and R can be constructed directly from the initial data on
e(S) , in the particular case that we are considering (m = 2).
The complete set of geometrical field equations (dynamical

equations and constraints) must therefore take the form:
vS = vslg,R] . (3.5)

Aside from the requirement that it yield a tensor field VS of
the correct form (i.e. third rank, covariant, symmetric in the
last two indices, and satisfying the contracted Bianchi identities),
no further restrictions are placed on this functional by the
physical assumptions made so far.

The calculations for other values of m (m > 1) are very
much the same as for m = 2 . If the initial data is assumed
to include 3g and its invariant derivatives along n up to
and including m-th order, then the dynamical equations give
the (m+1l)th derivative as a functional of the initial data.
Higher derivatives of 3g are then obtained by differentiating
the field equations, and the deformation dependence of the
invariant terms (space-time tensors) is eliminated by imposing
constraints on the initial data. Although the sequence may
terminate earlier, there are, in general, m + 1 orders of

constraint equations. When the dynamical equations and the
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constraints are all satisfied, derivatives of g to all orders
may be computed, and the system of equations is integrable.

The purpose of the constraints is to guarantee that the
predicted geometry of any future hypersurface, Dt(S) , depends
only on the initial data defined on e(S) , and not on the
sequence of intermediate hypersurfaces used in the time integra-
tion. Their net effect, however, is to supplement the dynamical
equations, building them up into a set of covariant equations in
the space-time fields, g , R, VR , etc., in which the highest
derivative of g is of (m+1l)th order and enters linearly

(cf. (3.5)).

4. The Einstein Vacuum Equations

Throughout modern physics it is assumed that dynamical
systems are characterized completely by their instantaneous
"coordinates" and "velocities", with their "accelerations" being
determined by dynamidal equations. For the geometrical field
theory being discussed in this chapter, the coordinates are the
components of 3g on e(S) , and the velocities are the compon-
ents of K ; so in this section I shall investigate the class
of theories for which m =1 .

As outlined above, the dynamical equations must take the

form

ns = ns[3qg,k,3R,3vK,...] . (4.1)
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Once this functional has been chosen, it may be used with (2.25)
to find VKK in terms of the initial data and the deformation
vector field D , and with (2.36),(2.37),(2.38), and other similar
equations to compute VK of each of the other fields upon which
IS depends. Knowing all these derivatives, we can use the chain
rule to compute VK(HS) .

On the other hand, though, equation (2.41l) gives

v2(18) (F,%) = vas (3, V) + SADS(E,Y) + £vprs(E,R) . (4.2)

Subtracting from this the expression obtained from (4.1) for

VB(HS)(E,g) yields an equation that may be solved for VES(E,3) :
v2S(4,v) = v2s03g,K,3R,3vK,...;D1 (4,V) . (4.3)

Because VES may be constructed directly from g , it is clear
that the right hand side of (4.3) must actually be independent

of D ; but an examination of the terms in (2.25),(2.36),(2.37),
and (2.38) that depend explicitly on D shows that no matter how
the functional (4.1) is chosen, its derivative, VE(HS) , wWill
not have (explicitly) deformation dependent terms of the form
%TGD*T(§) and %T$D*T(ﬁ) (with T independent of D ) capable
of cancelling the last two terms in (4.2). The only way in which

the deformation dependence in (4.3) can be eliminated is thus

to constrain the initial data to satisfy

K(v,h.)} =0 , (4.4)

>y L 3 > > _ 3
s(n,v) = sZ{ v;x(hi,hi) Vﬁi i

1
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and to choose the functional (4.1) so that its derivative, VK(HS),
is completely independent of D .

The constraints (4.4) serve to limit the configurations
of the initial data fields on e(S) . However, there is nothing
special about this particular space-like hypersurface, so equa-
tions (4.4) should also be satisfied on each subsequent hyper-

surface, Dt(S) . To this end I require that

a(s(n,v) =0 (4.5)
which leads, through a straightforward calculation, to

V28 (R,V) + %rgﬁin*{g(z,ﬁi)scﬁ,ﬁ) - eS(V,R)) =0 . (4.6)
Since this must be satisfied for all choices of D , I find that

vzs(K,G) = 0 (4.7)
and

1S (u,v) = ¢3g(u,v)s(n,n) . (4.8)

With the use of (2.25) and (2.27), equation (4.8) can be solved

to give
ns(a,v) = % 39(.3,3){Z3S(Ki,ﬁi) - e 7 [K(Ki,ﬁi)x(h’.,_ﬂ.)
i i,3 3
> > o>

Using (2.25) and (2.38), it can then be shown that

VE(HS)(E,$) =0 (= VESQG,G)) . (4.10)
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Derivatives of S in directions parallel to the hyper-

surface are given by
3va(Is) (U,%) (= v2s(u,V))
= % 3g(U,v){w3s - 2¢ ¥ [3v=k(h,,h.)R(h.,hH.)
i3 w i"i 373

_ 3 > > > > .
VaK(hi,hj)K(hi,hj)]} ; (4.11)

however, the contracted Bianchi identities for S8 tell us that

these must vanish:

(]
I

ZV+ S(K.,g) + eV+S(E,$) - %38
3 hi i n

> -> > > >
EVEiS(hi.V) - %V{(4/3)§S(hi'hi)}

3u. Ty 3y, > >
g{ Vhi(ns)(hi,v) (2/3) 3vy(us) (hy,h,)}

_;+3 3 > > > > _ 3 > > > >
g{ sv3S + e%[ VzK(hi,hi)K(hj,hj) v;K(hi,hj)K(hi,hj)]}

i

~Y3us > >
g VV(HS)(hi,hi) . (4.12)

Now it is well known that any symmetric, second rank tensor with
vanishing covariant derivative must be proportional to the metric

tensor, so we finally obtain the dynamical equations
(ms) (4,¥) = -a3g(&,v) (4.13)

with A a constant on e(S) . Equation (4.10) indicates that
A must also be a constant in time; and (4.8) now reduces to

the secondary constraint:
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S(n,n) = -eA 3 (4.14)

When collected together, equations (4.4),(4.13), and (4.14)
are quickly recognized as Einstein's vacuum equations for the

gravitational field (with the cosmological term):
S(U,V) = -ag(T,V) . (4.15)

For the restricted set of initial data fields, 3g and K , they
are the only field equations capable of unambiguously propagating
the metric of space forward in time.

A much shorter, but less instructive, derivation of these
same equations follows from the conclusions of Section 3 of this
chapter. They indicate that the Ricci tensor S must be an ex-
plicit functional of tensors formed from g and its first deriv-
atives (since m =1 ). But it is impossible to form any tensor

field from the first derivatives of g , so we must have
S = slgl ' (4.16)

which leads immediately to (4.15).

It is also interesting to note that even if we were willing
to add @S to the initial data (cf. Section 3) we would be
frustrated in all attempts to do so. Because g and R are
both of even rank, any non-trivial functional of these fields
must also be an even rank tensor. But VS is a third rank

tensor, so the only solution to (3.5) is
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Vs = 0 ’ (4.17)

which leads us once again to the field equations (4.15).

5. Metric Signature, and Causality

Throughout the foregoing discussions the sign & of g(ﬁ,g)
has been left undetermined, but definite. Whether ¢ 1is +1
or -1 makes little difference to the form of the field equations.
However, if g 1is to give rise to the (partial) time ordering of
physical events that is demanded by (1.1.2), then we must make

the standard assignment:
e = -1 . (5.1)

More pragmatic reasons for making this choice are provided by
the empirical successes of special relativity and Maxwell's
theory of electromagnetism.

Our original motivation for introducing the field g was
to induce a positive definite metric on each space-like hyper-
surface of space-time (the term "space-like" being defined in
(1.1.3)), and if we had decided that ¢ = +1 , then every hyper-
surface of space-time would have had such a metric. Starting
with the initial space-like hypersurface, e(S) , any deformation
vector field, B » would have then led to a sequence of hyper-
surfaces Dt(S) with induced Riemannian metrics. But with the

locally Minkowskian metric of physical space-time, the field
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D is severely restricted by the requirement that both B" ana
B* be smooth. This is illustrated by the following example.

Let M be a space-time endowed with a locally Minkowskian
metric g that satisfies some known set of (predictive) field.
equations; let M' be an open cell in M ; and let o' be a
space-like hypersurface of M' which extends to a space-like
}hypersurface o of M . Then, just as in Section 1, it is
always possible to generate a parameterized family of space-like
hypersurfaces Oy by deforming ¢ along a smooth vector field
D on M . For the purposes of this example I shall choose B

such that on o' it satisfies D* > 0 , and on o\o' its per-
pendicular part vanishes. I shall denote the portion of O
that does not coincide with ¢ by of (ol = (ot\Jo)\o ) .

This is illustrated in Figure 5.1. It follows immediately from
the above assumptions that for each point x of oé , and for
all t , every past (future) directed time-like path through
X intersects o' and each of the intermediate surfaces Ué '
0 <s <t (cf. (1.1.9)).

In conjunction with the field equations, the initial data
induced on ¢ can be used to predict what the geometry of each
of the subsequent hypersurfaces o is. The fields predicted

t

to exist on o¢! , however, depend only on the initial data

]
t
defined on o¢' and are independent of the field configurations
on o\o' . Without this result, one could not make confident

predictions about the future (or past) without first gathering
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Figure 5,1 Every past directed time-like path through x

(broken lines) intersects o' and each of the intermediate

space-like hypersurfaces Gé .
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information about the entire present universe, rather than just
some local neighbourhood.

Conversely, if the fields on oé are to be independent
of the initial data on o\o' , then the deformation vector field
D must (1) satisfy D* =0 on o\5' , and (2) leave each of
the hypersurfaces O space-like. This latter condition is
assured by requiring that both D" and D' be smooth fields.
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CHAPTER 3

MATTER FIELDS AND THE GEOMETRY OF SPACE-TIME

While much of the universe appears to be vacuous (or very
nearly so), we are unable to make direct observations of the
vacuum., Instead, we observe the matter that is contained in
the universe, and deduce from the distribution of matter the
geometry of both the vacuous and non-vacuous regions. It is
thus essential to include matter in any complete discussion of

the geometrical structure of space and space-time.

1. Initial Value Problem

The distribution of matter in space and its evolution in
time is characterized by a set of smooth tensor fields Fj ’
j € w , on space-time (cf. (1.1.8)). Since the space-time metric
g may always be used to lower indices, I shall assume (without
loss of generality) that the fields Fj are all covariant
tensors.,

Let F be a typical representative of the matter fields
defined on M' . (The notation here is the same as in Chapter 2
- i.e. M'" 1is an open cell in the space-time manifold, M .)
Then, on the initial surface, e(S) , the instantaneous configur-

ation of F 1is described by the hypersurface tensor fields
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HF=F(H(_)Io.o1H(_))
F(A,I( ) yeee,N()) , FUI(),A,0( ) 0ee,T()) 4 «..
F(R,A,0( ) ,ee,T()) 4, FA,I( )R, ) seeerll)) 4, onn

etc.

The instantaneous rate of change of F 1is described by analogous
hypérsurface fields constructed from VEF ; the accelerations

are constructed from {V>V>F - V_ =>F} ; and so on.
nn >N

v

Although all of the fieldsnthat are induced on e(S) in
this way are a priori independent of each other, only a small
subset of them need be specified (along with the geometrical
initial data) in order to determine the complete set. For a
given matter field, Fi , only a finite number of the induced
hypersurface fields may be considered as initial data; and, as
with the metric, all of the time derivatives of Fi beyond some
given order, say m, , can be obtained as explicit functionals
of the lower derivatives of Fi , the initial data for the other
matter fields, Fj , and the geometrical initial data (discussed
in Chaptef 2).

Now suppose, once again, that the geometrical initial data

is given by 3g and K , corresponding to m = 1 . In the

vacuum case the dynamical equations for g took the form

ns = 1s[3g,k,3R,3vK,...] (2.4.1)

e

but when matter fields are present there is much more initial
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data upon which IS can depend. To avoid confusion between

the field, 1S , and the functional, I shall write
ns = 3g[ 1.D. 1 (1.1)

with I.D. representing the complete set of initial data fields
and their hypersurface derivatives.

Once the functional 3E has been chosen, equation (1l.1)
may be substituted into (2.2.25) to find VKK in terms of the
initial data and the deformation vector field, B ; and this,
together with the (as yet undetermined) dynamical equations for
the matter fields, allows us to compute VESE as a functional
of the initial data and D . We know from (2.4.2), however,

that this new functional must take the form

v23E(E,Y) = 3E'(G,T) + %TED*3P($) + %I$D*3P(E) , (1.2)
where 3E' and 3P are again explicit functionals of the

initial data. Further comparison with (2.4.2) gives

v>S(4,V) = 3E'(4,W[ 1.D. 1 (1.3)
and the primary constraint equations

s(d,n) = %I I.0. 1 . (1.4)

These constraints on the initial data must always hold on
e(S) . But since e(S) is arbitrarily chosen they must also be

satisfied on any other space-like hypersurface. It immediately
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follows that
n(s(a,n) - 3P(A)) =0 . (1.5)
Expanding this and using (l1.1l) and (l1.4) we find that (with 3P(K)=0)
V230 () = vas(d,B) + A0S (R,D) - g%rigﬁin*?»E(E,Hi) . (1.6

But VxS must be independent of B , so when VK3P(ﬁ) is com-

puted directly it must take the form

> - 1l > 4 1l o> & > >
VK3P(_u) = 3p'(u) + STub'F - ED—*iZhiD 3E(u,hi) , (1.7)
where F and 3P' are functionals of the initial data. Compar-

ison with (1.6) then gives the secondary constraint
s(a,n) = F . (1.8)

The equations (1l.1),(l.4), and (1.8) are easily recognized

as the Einstein field equations:
s(U,V) = E(T,V) (1.9)

where E 1is the symmetric space-time tensor defined by

E(4,v) = 3E(Q,v) ,
E(G,R) = 3P(Q) (1.10)
E(n,n) = F .

By defining the Einstein tensor

G(U,V) = s(U,V) - %g(0,V)s , (1.11)
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and the stress—energy tensor (in natural units)
T(U,¥) = (1/8n) (E(U,V) - %g(T, N (JE(R,,K,) + E(@,A)) , (1.12)
i

which, like E , is an explicit functional of the initial data,

the field equations may be recast into their standard form:
G(T,V) = 8rT(U,V) . (1.13)

The cosmological term appearing in the vacuum equations, (2.4.15),
has here been absorbed into. T .

The role of the stress-energy as the source of the gravita-
tional (metric) field is now manifest. But we are not finished
yet. If the tensor S is to be a genuine Ricci tensor, then it
must satisfy the contracted Bianchi identities:

Jvg S(B;,V) + ev2s(3,V) = 5VUs . (1.14)

it n
Through (1.13), these give us conservation laws that the stress-

energy must satisfy:

Jvg TR, V) + evaor(n, V) =0 (1.15)
i i
or, in terms of hypersurface fields,
3 3—>—>_;/33—>—> _ TP N3
g{ vﬁi E(h;,V) s Svy3E(h,,h)) - K(h,B;)3P (V)
- KB, M) = eCFF - 21V, (1.16)

and
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nF = 28——2h D3P (H;) + eJ{3E'(R,,B) + 2k(K ,H)F
i
_ 53 3o (T Y O RN SPE, S o
2 vKi P(h,) 25§K(hi,hj) E(R; B0 . (1.17)

Equations (1.16) and (1.17) are constraints on the form of the
equations that govern the evolution of the matter fields, so
through the Bianchi identities gravity exerts a back-reaction

on matter.

Example. To illustrate this coupling of gravity and matter, I
shall assume that the only matter field defined on space~time is

a real scalar field, ¢ . On the initial hypersurface, e(S),

¢ 1is characterized by the fields

¢ K¢ ’ {KH¢ - VKK¢} , etc.
For the functional 3E = I3E , I choose the form defined by

3T Ty o T2 3 > 3y 2 2

E(u,v) = u¢ve + 3 g(u,v)u ¢ 7 (1.18)

where 1y 1s a constant. Differentiating this along n gives

V23E(G,V) = RO3E(G,V)) - PE(vz4,V) - 3E(d,v2V)

>> > > P P e i - 2 2 3., > 2 -
= nu¢ve + u¢nve + %n(3g(u,v))u” ¢~ + 3g(u,v)u” ¢n¢
> > > > > > >
- 3E(——£+ u - egK(u,hi)hi,v) - E(u,D‘£+ v - egK(v,hi)hi)

= éJ_uD neve + Uneve + ]]3'LVD ngup + Uvng + X 3g(vKE,$)p2 ¢2

+ % 39(3,V;3)u2 82 + 3g(L, V) u’ onmé - % 3g(Ectx.
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+

eJR(E, B (R ov + % 2B, 007 0% - % 2@ Ertg )’ o7
1

2

+ eJK(V,hH,) (B, ¢Us + % 39(G,Ki)u2 $°}

1l

(A(R$) Ve + Uov(he) + 3g(3,9)u? one + e] (R(4,h,) V9
1

]___+

> > > > > > 1l > ,»> >
+ K(v,hi)u¢)hi¢} + DLVD‘n¢u¢ + BTuD*n¢v¢ , (1.19)

where extensive use has been made of (2.2.11) and (2.2.16). AS
required, this final expression takes the form stipulated in (1.2);

and by identifying the appropriate terms we find

SE'(U,Y) = W(HEe)Ve + WV(He) + 39,V u’ oho
+ el {K(U,B)Ve + K(V,A)GeYR 0, (1.20)
1
3p (W) = n¢u¢ . (1.21)
If we set 3P(E) = 0 , then (1.21) can be differentiated
to give

v23P (1) = R(3P(Q)) - 3P (V)

= Ué (nn¢ - VKE¢) + n¢(Une¢ + eZK(ﬁ,Ki)Ei¢)
1

+ %TED*(K¢K¢ r xeu? 4% - e%rZﬁiD*(G¢ﬁi¢ + % 3g(ﬁ,ﬁi)u2 42 .
1

(1.22)
This takes the required form, (1.7), and again identifying terms

we obtain

F = n¢n¢ + %eu” ¢ , (1.23)
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P' (W) = U¢(nn¢ - VzA¢) + M¢(UR¢ + eJK(U,BIR.0) . (1.24)
i
The functional forms of 3g, 3g', 3P, 3P', and F can now
be substituted into the conservation laws (1.16) and (1.17) to

give, respectively

> o> _ 3 > _ > > > o >
{g(hihi¢ vﬁihi¢ K(hi,hi)n¢) + e(nn¢ V3n¢)
S TR (1.25)
> > _ 3 > _ > > > T >
{g(hlhi‘b Vﬁihicp K(h,,h;)n¢) + e(nng - vang)
2 >
- 1% ¢Ing = O . (1.26)

These equations must be satisfied everywhere on e(S) , but since

. . > >
at generic points n¢ and/or u¢ are non-zero we must set

JB.B o - vx Bogo) + c(@ho - vahe) - We=0 . (1.27)
1 1

This last equation is easily recognized as the Klein Gordon
equation, and from it we deduce that the initial data for ¢
consists of just the two fields, ¢ and K¢ , on e(S) . The
space-time metric must satisfy the field equations (1.9), with
the explicit functionals obtained above being used in (1.10)

to define E .

It is clear from the equations (1.13) (or (1.9)) that, as
in the vacuum case, the dynamical equations governing the evolution

of the metric are always supplemented by a set of primary and
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secondary constraint equations in such a way that the complete
set is covariant in the space-time fields from which the initial
data is constructed. This is equally true when it is supposed
that time derivatives of g beyond the first are included in
the initial data (i.e. m>1l). Thus, for m = 2 , the vacuum

equations (2.3.5) generalize immediately to
m.
VS = VS[g,R,Fj,VFj,...,V JFj] (1.28)

when matter fields are present.

The back-reaction of the space-time geometry on the matter
fields is also present, but less obvious, when m > 1 . Once
the geometrical field equations (i.e. equations (1.28) for m = 2)
have been chosen, one must always check to see that they are com-
patible with the Bianchi identities (1.14); imposing restrictions
on the matter field equations to assure this. These restrictions,
when they are necessary, represent geometry's reaction on matter.

Before proceeding to the next section, a few brief remarks
regarding gauge fields are in order. For convenience in the fore-
going discussions, I have implicitly assumed that the distribution
of matter in space-time is characterized by a unique configuration
of the fields Fj . However, it is well known that many different
configurations of the same set of fields (here more appropriately
called gauge potentials) may actually provide equivalent, complete
characterizations of the same matter distribution [12]. Moreover,

it may be necessary to define the potentials, Fj ; pPiecewise on
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overlapping neighbourhoods, in order to cover the entire space-
time manifold [13]. (If Fgl) and ng) are the field configur-
ations on the overlapping neighbourhoods U and U of M,

1 2
respectively, then on the overlap region, ul(\u2 , both Fgl)

J

and ng) characterize the same matter distribution.)

The degrees of freedom in the fields Fj that are not
needed to uniquely specify the matter distribution are called
the gauge degrees of freedom, and the associated (gauge fixing)
fields have no physical significance. When written in their
four dimensional form in terms of space-time fields, the physical
field equations make no reference to these non-physical fields.
Nonetheless, in order to cast the field equations into an initial
value form, specific gauge fixing conditions, which will have
no ultimate effect on the physical predictions, must be chosen.
In the first part of this section, no mention was made of these

arbitrary gauge conditions, but since the gauge conditions have

no influence on the physics, no generality was lost.

2. Alternative Geometries and Unified Field Theories

A great number of researchers have tried, during the past
sixty-five years, to develop a new theory that maintains the
philosophical and empirical successes of GR while either extending
its domain of validity or else evading some of the philosophical
problems that plague GR. The main premise of almost all such

efforts is that the pseudo-Riemannian geometry of GR is too
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restrictive to provide a complete description of the world and,
in particular, that the "physical" covariant derivative has
non-vanishing torsion.

Einstein himself was never completely happy with GR,
primarily because of its singular solutions. Considering GR
to be just a macroscopic theory, he hoped to be able to find a
more complex geometric theory that would yield a singularity-
free model for an elementary particle. As early as 1928 Einstein
suggested a theory of gravity with non-vanishing torsion, but
zero curvature [14]. His later efforts to construct a unified
theory of gravity and electromagnetism [15] presumed a still more
complicated geometry, with a non-symmetric fundamental tensor,
the symmetric part of which was a locally Minkowskian metric, and
again a non-trivial torsion tensor. Although Einstein never de-
veloped a completely acceptable model, it has been shown recently
by Moffat and co-workers [16] that all of the phenomenology of
gravitation and (classical) electromagnetism may be understood
within the context of the (pseudo-)hermitian geometry of the
Einstein=-Schrodinger theory ([1],[17]). Moffat [1l8] has also
shown that a variation on the Einstein-Strauss theory [15] can
lead to particle-like solutions which are non-singular in the
sense that they are world-line complete, even though there are
singularities in some of the field invariants.

The desire to obtain a renormalizable guantum theory of

gravity seems to be the main reason for renewed interest in
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Einstein~-Cartan type theories [19]. Several different models
have been proposed [20], with spin being coupled to gravity,
through the torsion, in a non-trivial way. However, all such
efforts seem to lead to a torsion field which is algebraically
related to spin, and which, therefore, does not propagate as
an independent field.

On the surface, it may seem as though the formalism I have
developed excludes from consideration any kind of geometric struc-
ture for space~time other than the pseudo-Riemannian geometry of
GR, and thus all of the "generalized" or "unified" theories based
- on alternative kinds of geometry. This is not the case, however,
All that I have done was to separate the metric defined on space-
time from any other tensor fields that are pertinent to physics,
and then determine what sorts of equations are capable of propa-
gating the metric forward in time. Since, in each of the theories
discussed above, the alternative geometries always include a
metric tensor, and since the metric must always propagate, the
results of Section 1 remain applicable even for theories with
non-Riemannian geometry, provided additional geometric fields
such as the torsion or the skew part of a non-symmetric funda-
mental tensor are treated as "matter" fields.

This general applicability of the (pseudo-)Riemannian
results should not be surprising, and has actually been known
for a long time [21]. It follows from the well known fact that

the difference of any two affine connections is a tensor field.
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What it implies is that any theory that is based on a non-
Riemannian geometry (which includes a metric) may always be re-
formulated in terms of (pseudo-)Riemannian geometry plus tensor
fields; and, in particular, any physical theory whose field
equations include derivatives of the metric up to and including
second order, but no higher, is mathematically equivalent to
Einstein's general theory of relativity (with sources). Thus,
while they cannot be dismissed altogether, the advantages of
introducing alternative geometries seem limited to the motivation
of field equations different from those that would normally be

investigated, and of new interpretations for physical fields.

3. Already Unified Theory

Rather than probing new kinds of geometries, Misner and
Wheeler [9] followed the early work of Rainich [8] and showed
that the conventional (pseudo-)Riemannian space-time already pro-
vides a sufficiently rich structure to accommodate both gravity
and electromagnetism.

For compactness in the exposition of their findings, I
shall now adopt a component notation, with indices 1i,j,... and
a,B8,+so ranging from 0 to 3 , and repeated indices being
summed. The vectors Ki , 1i=0,1,2,3 , will now represent a

vierbein field:

> >
g(hllhj) —-.nij ’ (3.1)
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while 3a r a=0,1,2,3 , are the coordinate basis vectors for some
implicit coordinate chart. Corresponding l-forms h' and gga

are defined by

i,» _ i a X _ L0
h (hj) =87 and dx"(9,) = &7, . (3.2)

The "already unified" theory of Misner and Wheeler is not
a new theory, but just standard Einstein-Maxwell theory (with a
source-free electromagnetic field) written in a purely geometrical
form. Let F = %FasgﬁaA §§B = %FijEiA Ej be the 2-form repre-

senting the electromagnetic field. Then its Poincaré dual is

the 2-form *F = %*Fa8§§uA §§8 whose components are defined by

* = uv 2> - 2
F,o = F Det(aa,gs,au,av) , (3.3)
where FM*V = guA gvg Fxc and Det 1is the volume 4-form
pet = h°A htAn?An® . (3.4)
In terms of F and *F , the source-free Maxwell equations
take the simple form
drF = 0 and d*F = 0 ’ (3.5)
and the Maxwell stress—energy tensor has components
- ! * %@ H
Tyg = Fou Fg + *Fo, *Fg . (3.6)

The complete Einstein-Maxwell system thus consists of equations

(3.5) and (l1.13), with the stress-energy tensor in (1.13) being
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given by (3.6).
Rainich [8] showed that, gquite independent of the Maxwell
equations, (3.5):, any Ricci tensor arising from (1.13) with the

stress—-energy tensor (3.6) must satisfy

S = Saa =0 , (3.7)
B Y _ Y o1

S, Sg 5, '(s__ 87"/4) , (3.8)

Spp * O . (3.9)

Misner and Wheeler proved the converse, showing that any geometry
whose Ricci tensor satisfies the Rainich conditions, (3.7), (3.8),
and (3.9), can be represented as the "Maxwell square", (3.6), of
some skew field F . They showed, moreover, that the field F

is uniquely determined by S (using equations (3.6) and (1.13))

up to a global duality rotation:

F > e** F =F Cos a + *F Sin o . (3.10)

Defining the l-form o = au§§” by the equation

= ABju v )
OLT (Det)"ckuv S SB /(SYss ) ’ (3.11)

they then showed that if (3.7), (3.8), and (3.9) are satisfied and
da =0 ' (3.12)

then the field F whose Maxwell square is S will automatically

satisfy the Maxwell equations, (3.5); and they gave an explicit
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procedure (the details of which are not important here) for
finding F , given S , in the restricted case that S is not
null (s_ s # 0).

The equations (3.12) are fourth order differential equations
in the components of the space-time metric, g , and taken to-
gether with the Rainich conditions, (3.7), (3.8), and (3.9), and
the Misner-Wheeler procedure for finding F , given S , they
constitute a purely geometrical, "already unified" way of repre-
senting the Einstein-Maxwell equations. The electromagnetic
field, in this picture, is a derivative guantity and never enters
on a fundamental level. The only fundamental field is g .

While its development was a great achievement, the already
unified theory of gravity and electromagnetism is not without
problems., The first of these is that it is unable to cope with
electromagnetic fields that are null on any set of measure greater
than zero. This is not too severe a restriction, though, since
in reasonable physical situations one would expect the electro-
magnetic field to have a coulomb component that is non-vanishing
at generic points. More serious problems are the lack of a
Lagrangian formulation for the theory, and the certainty that
any linearized version or initial value formalism of the already
unified theory would be indistinguishable from corresponding
treatments of the Einstein-Maxwell theory.

Aside from its failings, and the obvious fact that no

experiment can distinguish it from Einstein-Maxwell theory, I
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find the already unified theory very interesting for the following
reason. Suppose that Einstein-Maxwell theory actually provides
a“correcﬁ'description of the mutually interacting gravitational
and electromagnetic fields, and that in the region M' of space-
time there are no matter fields other than the electromagnetic.
Then the work of Rainich, Misner, and Wheeler indicates that if
we make thorough measurements of the metric on M' , then we can
deduce from those measurements the configuration of the electro-
magnetic field (up to an overall duality rotation). There is no

need to make measurements of the electromagnetic field indepen-

dently of the measurements of the space-time geometry.

Even if one wanted to make direct measurements of the
electromagnetic field, how would one do it? The simplest pro-
cedure would be to take a known charged particle, say an electron;
set it adrift with some initial velocity, v ; and make careful
observations of its trajectory. But in charting its trajectory
through space~time we would be measuring distances - that is,
measuring the space-time geometry - so we really wouldn't be
making direct measurements of the electromagnetic field.

I have not studied the problem sufficiently to make a
definitive statement, but I suspect that all attempts to make
direct measurements of the electromagnetic field would be similarly
doomed. Jumping far beyond the domain of electromagnetism I

shall adopt the following hypothesis:
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Hypothesis: The only physical field that may be measured

directly is the space-time metric. The configurations of all
matter fields defined on space-time must be deduced from the

space~time geometry.

If this is the case, and if we still want to think of the matter
fields as being somehow fundamental (as they are in gquantum
mechanics), then should we not think of the metric as being just
the messenger of the matter fields, shouting out their existence
and their characteristics as clearly as possible without colouring
or obscuring the message unnecessarily with its own idiosyncracies?
But the metric would fulfil this task most readily if it were to
couple to the matter fields in the simplest possible way, through
the Einstein equations (1.13), leaving the determination of the
space-time geometry completely up to the matter fields. 1In any
higher order dynamical equations for the metric (m > 1), all of
the components of the curvature would be included in the initial
data (albeit constrained) making it potentially impossible to
decide what portion of the curvature is "gravitational" in origin
and what portion should be ascribed to the matter fields.

It also follows from my hypothesis, that if the various
matter fields are to be perceived, and distinguished from each
other, then they must each leave a distinctive "imprint", analo-
gous to the imprint created by the electromagnetic field, on

the space-time geometry; and accordingly, that there must exist
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a super already unified theory capable of providing a purely

geometrical description of all forms of matter. Any reasonable
theory of interacting metric and matter fields must therefore
be able to be recast into an already unified form, and if it
cannot be, then it must be rejected.

The last two paragraphs were, clearly, quite conjectural,
and I do not intend that they be taken as more than that. None-
theless, I believe that these conjectures deserve further inves-
tigation, firstly because of the remarkable Rainich, Misner,
Wheeler results, and secondly because only by pursuing such ideas
can we ever hope to gain an understanding, based on physical
ideas rather than mathematical conveniences, of why the particular
equations we use to describe the world should be more appropriate

than any other set.

4, Global Considerations

Throughout the foregoing discussions no assumptions have
been made about the global topology of space or space-time.
Instead, I have restricted my attention to some open cell, M' ,
in space-time on which all physical fields are well defined and
of class C . For each generic point, x , of space-time there
exists such a cell containing x , so all of the conclusions I
have drawn respecting field equations hold at all generic points.

The global topology of space-time becomes important, how-

ever, when one starts investigating solutions to the field
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equations. The interrelationship between the pseudo-Riemannian
geometry and the global topology of space-time, and the topology
of space-like hypersurfaces of space-time, is discussed exten-
sively by Hawking and Ellis [22]. Here, I would just like to
point out that since any manifold may be constructed by piecing
together open cells, any solution of a set of field equations may
be (and in practice is) constructed by piecing together solutions

defined on open cells.
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CHAPTER 4

THE TOPOLOGICAL WORLD

1. Gravity in a Quantum World

Classical concepts are adequate for the description and
understanding of all observed features of gravitation. However,
it is firmly established that the behaviour of matter in the real
world can be fully understood only within the context of gquantum
theory. Material phenomena that can be effectively described
with the use of classical (as opposed to guantum) variables arise
as a consequence of the gquantum behaviour of large systems, and
are only manifested in macroscopic systems. Since general rela-
tivity, as it was formulated by Einstein and as I have presented
it above, couples the space-time geometry to classical descriptors
of matter, it is reasonable to conclude that GR is only valid f
when macroscopic (classical) systems are being investigated.

This limitation of GR has long been recognized, and many
attempts have been made to remove it by constructing new theories
that are valid in the quantum domain and which reduce to GR in
the classical limit. The most common line of attack is to
quantize the space-time metric much as one would any other field.
[23], however, quantized GR has been shown to be non-renormaliz-
able [24] and it seems unlikely that renormalizability can be
restored within a model that has the correct classical behaviour

[25].
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An alternative "semi-classical" approach was proposed by
Mgller [10]. He suggested that, rather than quantizing the
gravitational field, it might be more appropriate to continue
to think of it as a c-number field, with the expectation value

of the quantum stress—-energy tensor as its source:
G(U,V) = 8 <T0p(‘6,\7)> . (1.1)

These equations are to be solved self-consistently, with the
quantum fields that contribute to the stress-energy being defined
"on the curved space-time that they determine. The major diffi-
culty with the coupling (1l.1) is that the simple normal ordering
procedure used in special relativistic QFT to eliminate the zero-
point energy from ( TOp » has no obvious unique analogue on
curved space-time [26]. The situation is not hopeless, however,
and recent results obtained by imposing physical renormalization
conditions at each order in perturbation theory [36] may well

lead to a resolution of the problem. One of the most interesting
features of this gravity modified quantum theory is that the
linear superposition principle ceases to be valid because eguation
(1l.1) is non-linear. This certainly represents a dramatic break
from conventional quantum theory, but, as has been demonstrated

by Everett in his "many worlds" interpretation of gquantum
mechanics [27], it is not unreasonable to assume that the entire
universe is described by a single, smoothly evolving wave function,

thereby eliminating the need for a superposition principle.
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In addition to the two traditional approaches to the recon-
ciliation of curved space-time and quantum theory, there have
been several suggestions advocating the adoption of radically

different world-views. Most notable amongst these are the

twistor theory [28] being developed by Penrose and co-workers, in
which the spin group SL(2,C) plays a central role, and

Finkelstein's space-time code [29] in which quantum processes

are considered as fundamental and space secondary. Unfortunately,
these theories are extremely complicated and they seem to be
quite arbitrary. Unless they can be made more intuitive it is
unlikely that they will ever gain popular acceptance.

Much of the recent interest in quantum gravity seems to
have been stimulated by developments in elementary particle theory.
The non-abelian gauge theories have provided a single formalism
capable of handling all strong, weak, and electromagnetic inter-
actions; and, as a bonus, the fibre bundle picture of gauge fields
makes them look (at least superficially) similar to the gravita-
tional field [13]. If the graviton could be added to the elemen-
tary particle zoo, using gauge theory techniques, then particle
theory would, in a sense, be complete. From a different view-
point, gravity appeared as the only remaining physical phenomenon
that might be able to eliminate the singularities that occur
throughout quantum field theory. In either case, it was (and 1is)
suspected that gravity and particle physics are linked in some

fundamental way, and that neither one can be fully understood



Ch. 4 69

without the other.

In the remainder of this chapter I shall pursue this
connection between gravitation and particle physics, looking for
answers, not in quantum theory, but in the structure of space-
time. I take my guidance from Einstein, who showed most elegantly
that the removal of unnecessarily restrictive assumptions can

reveal beautiful and exciting physics.

2. Pregeometry is No Geometry

The key to special relativity was the revelation that time
need not be absolute. Einstein quickly realized, though, that
even the Minkowski space-time was too restrictive - its absolute
geometric structure could not be justified. Freeing up the geo-
metry led naturally to GR and an understanding of gravity never
before dreamed of.

In early investigations of curved space-time it was just
assumed that space and space-time have the topologies of R3
and R4 , respectively, but it was soon realized that this assump-
tion was also too restrictive. Observations of the universe
extend out only a finite distance, so on a very large scale the
topology is indeterminate. Other topologies (than R4 ) were
investigated and gave interesting results, and GR quickly assumed
a central role in the field of cosmology [30].

In the other direction, at small distances rather than

large, the situation is similar. Experimentally, we have only
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been able to probe to 10 1+°

-33
c

cm , which is a long way from the

Planck length, L_J = 10

p m , at which gravitational effects are

expected to significantly influence quantum processes. There is
thus no compelling physical reason to suppose that the space-

time topology remains trivial at lengths less than 10—16cm (or

10-33cm if you wish to be more conservative). Indeed, it has
often been suggested that the space-time topology becomes extreme-
ly complex at short distances, with the degree of complexity
increasing as the length scale decreases. As an extension of
their already unified theory, Misner and Wheeler [9] showed that
charge could be recovered from source-free electrodynamics by
assuming a multiply connected space-time. Looking more towards
quantum gravity, Wheeler [31l] conjectured that space is a "foam-
like" structure whose topology is constantly changing due to
guantum fluctuations at lengths of the order of LP . He envis-
aged particles as being macroscopic collective modes of the
fluctuating topology/geometry.

With the completely arbitrary topology of Wheeler's quantum
geometrodynamics, it would seem as though Einstein's programme
of removing restrictive assumptions about the structure of space
and time has been brought to a conclusion. But Wheeler is not
yet satisfied. He argues that if one can obtain electromagnetism
without electromagnetism and charge without charge, then one
should also be able to obtain geometry without geometry; and he

has coined the word pregeometry to symbolize the structure from
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which geometry arises.

The nature of pregeometry is very vague. Wheeler surmises
that it might be topological or even "pretopological”, but he has
no specific model for it. By drawing a picture in which each
topological configuration of space is endowed with a geometric
structure, he seems to imply, however, that pregeometry is some-
thing conceptually distinct from (and in addition to) the topology
of space or space-time. I believe that this picture is unneces-
sarily complicated; and that the pregeometry which Wheeler seeks
is nothing more than the topology of space-time.

Consider a 4-dimensional topological manifold, W , whose
global topology is extremely complex. Although it is always
possible to assign to W some particular geometry or field struc-
ture, I shall assume that all such fields are irrelevant - W 1is
completely characterized by its topology. Moreover, the global
topology of @ 1is not subject to any restrictions beyond those
that are necessary to preserve the manifold structure. Now imagine
trying to describe some of the gross features of the global struc-
ture of W without knowing all the fine features. The usual
topological descriptors become useless because they depend on a
complete knowledge of the details, but perhaps there is an alter-
native mode of description. If we consider a topologically simple
4-manifold, M , then perhaps we can replace (or symbolically
represent) some of the topological complexities of W with the

use of appropriately chosen fields on M .



Ch. 4 72

This is the basic picture of physics that I shall begin to
develop below. I think of the objective world underlying all of
our perceptions as an unimaginably complex, 4-dimensional manifold,
W . All of physics for all of time is coded into the topology
of W , but even this vast amount of information represents only
a tiny fraction of the information contained in W . If W 1is
the (real) objective world, then the space-time-matter world of
our perceptions is but a faint shadow. Matter and all its proper-
ties, life, and even intellect are contained in that shadow. 1In
this world of perceptions, most information about the topological
complexities of W is lost, and the remainder is represented by
matter fields defined on a topologically simple, geometrical space-
time manifold. Conventional space-time thus emerges as a replace-
ment manifold for W - a simplified version of W which has no
objective existence,

Wheeler's vision of transcending geometry is realized, not
by appealing to some new mathematical or logical structure, but
by recognizing the stupendous amount of information that can be
coded into the topology of a 4-dimensional manifold. If we think
of W as space-time viewed on a deeper level, then pregeometry
is the space-time topology. When geometry is born, topological
complexities must die; so geometric space-time is topologically
simple at small distances (in contrast with Wheeler's geometrical

space-time foam),
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3.  Breaking the Topological Code

My conjecture is that all of physics is encoded in the
mathematics of 4-~dimensional topological manifolds, and that the
particular world we are a part of corresponds to a particular
manifold, % . The problem now is to break the code and extract
physical laws from an (almost) unconstrained mathematical system.
I cannot claim to have done this, but I do have suggestions for
a scheme that I consider to be worth pursuing.

Again, just as in Chapter 2 , I shall begin with an inves-
tigation of 3-dimensional manifolds. My principal reference
here is "3-manifolds" by John Hempel [32], which is quite a
complete survey of progress, up until 1976, on the problem of
classifying all 3-manifolds. This is a very difficult problem
in topology and most of the techniques being used to solve it
are beyond the grasp of a novice like myself. Nonetheless, there
are some general results that are easily apprehended, and which
seem particularly useful for the physics problem I have set myself.

Let Ml and M2 be connected 3-manifolds (possibly with
17 B2 be’closed 3-cells in the interiors

of Ml ’ M2 , respectively. Removing the interiors of these

boundaries) and let B

cells leaves the remainders Ri = Mi - Int Bi , 1= 1,2 . A third

3-manifold M is said to be a connected sum of Ml and M2 if

there exist embedding maps ei:Ri + M such that el(Rl)f\ez(Rz)
e (3B]) = e,(3B,) and M = e (R e,(R,) . This is denoted

by M = Ml#M2 . If either Ml or M2 is non-orientable then
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Ml#M2 is unique up to equivalence; but if both are oriented then
two distinct manifolds may arise, corresponding to the cases when
el—loe2 is an orientation preserving and orientation reversing
homeomorphism of the 2-sphere boundaries. In situations I shall
consider, this ambiguity will never occur.

"Connected sum"is a well defined associative and commutative
operation, so for any finite k the notation Ml#Mz# .o #Mk
is unambiguous.

For any 3-manifold M it is obvious that M#S3 =M, so
the 3-sphere behaves as an identity element for connected sums.
M is said to be prime if M = Ml#M2 implies that one of Ml P

M2 is a 3-sphere.

3.1 Theorem Each compact 3-manifold can be expressed as a

connected sum of a finite number of prime factors [32].

Prime decomposition is not unigue. Hempel shows that if

M = Ml#(Szxsl) where M is non-orientable, then M = Ml#P .

1
Here P is the non-orientable 82 bundle over Sl (the

3-dimensional analogue of the Klein bottle) and both SZxSl and

P are prime. To get around this problem he defines a normal

prime factorization of a 3-manifold M to be a prime factoriz-

ation M = Ml# .os #Mk such that some Mi is Szxsl only if

M is orientable, This leads to the central result:

# oo M, = M* ¥ ... #M*

K 1 be two

3.2 Theorem Let M = M

1 k*
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normal, prime factorizations of a compact 3-manifold M . Then

k = k* and (after reordering) Mi is homeomorphic to M*i [32].

That is, there is a unique normal, prime factorization for each
compact 3-manifold (with boundary).

With this last result, the problem of classifying all com-
pact 3-manifolds is reduced to the problem of finding and class-
ifying all prime 3-manifolds. However this is still a very
difficult task which is far from complete. Even though an
infinite number of prime 3-manifolds have already been identified
there are many more yet to be found.

Now, what I want to do is to build up the topological space-
time manifold, W , by stacking together 3-dimensional submanifolds.
This will create a picture concordant with the perceived special
status of space-like hypersurfaces in geometrical space-time.

It will also introduce the concept of time on a fundamental level.
Although it is not clear whether this assumption is necessary or
not, I shall assume, for illustrative purposes, that W 1is
endowed with a differential structure of class C . The Whitney
embedding theorem [33] then allows me to consider W as a smooth
submanifold of RS ; inducing on W a (non-physical) Riemannian
metric, dg -

Let B be a closed 8-cell in R° such that W' = WNB
is a connected, compact (yet still extremely complex), 4-dimen-

sional submanifold-with-boundary of & and W' = W/ 3B is a
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Figure 3.1 W may always be considered as a submanifold of R

The closed 8-cell, B , is chosen such that @' = W(\B is

connected and SW' = W/\3B is closed.

8

76
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closed 3-manifold (Figure 3.1). W' will correspond to a closed
4-cell in geometric space-time, whereas the entire geometric

space-time (corresponding to all of W ) may have a non-trivial
topology. Choose,for the "initial" 3-dimensional submanifold of

W' , a submanifold S such that aSO = SOfXBW' is a 2-sphere

0
which divides 3W' into two pieces, one to the "past" and one
to the:"future" of aSO . With this condition on the boundary,
the prime decomposition of SO must take the form
S, = M # #, 483 (3.3)
O l * e @ k 14 L]

where B3 is the closed ball in 3-dimensions and the manifolds
Mi have no boundaries [34].

Turn now to the geometry induced on SO by the embedding
of W in R8 . Since its geometry has no physical significance,
we may deform W (and B ) in R8 to make it assume whatever
geometric configuration we wish, subject of course to the con-
straints imposed by topology. In particular, we can assume that
the embedding has been chosen so that SO takes the form of a
Euclidean space onto which a large number, k , of small, widely
spaced, prime 3-manifolds, Mi , have been fastened (Figure 3.2).
For comparison, the 2-dimensional analogue of SO is a Euclidean
disc onto which have been fastened (by cutting and pasting) a
large number of very small and widely separated handles (or

crosscaps). The main difference is that 3 dimensions provides

an infinite variety of distinct objects, rather than just
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Figure 3.2 The geometry of SO is chosen to make it appear
like a Euclidean space onto which small, widely separated,

prime 3-manifolds, Mi , have been fastened.

Figure 3.3 Hypersurfaces near SO are assigned similar

geometries so that the topological anomalies appear to travel

on smooth paths through W'
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Figure 3.4 (a) The topology of 2-dimensional slices through the

solid torus changes at the critical points w,x,y,z . (b) A dif-

ferent choice of geometry can produce additional critical points.
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handles or crosscaps.
Sufficiently small deformations of SO in W' vyield new
hypersurfaces with the same topology as SO . Let {St: t € IG}

be a continuous family of mutually disjoint hypersurfaces in W'

such that, for t > s , Ss may be continuously deformed through

W' into St , and aSt = SthSW' is a 2-sphere in the piece of
W' lying to the future of aSS . Each of the 3-manifolds St ’
t € I(S ; is homeomorphic to SO and has the same prime factor-

ization: Ml# .o #Mk#B3 . By choosing the induced geometries

to be similar to that already chosen for SO y W& arrive at a
simple geometric picture of an open region of W' containing

SO which portrays space-time as an (almost) Euclidean space that
is being traversed by k very small and widely separated topo-
logical anomalies (Figure 3.3).

If we try to deform S too far through W®' , however, we

0
will run into topological obstructions because W®' does not have
the product topology SoxI , with I a closed interval. This is
best illustrated in three dimensions, rather than four, by looking
at 2-dimensional slices through-the solid torus (Figure 3.4(a)).
Between a and b all of the slices have the topology of a disc,
but at b the 2-dimensional section ceases to be a manifold (due
to the singular point x ), and between b and ¢ each section
is the disjoint sum of two discs. The point x , and also w,y,z

are called critical points of the torus [35]. Although a differ-

ent choice of geometry, such as in Figure 3.4(b), could have
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produced additional critical points (which need be neither iso-
lated nor non-degenerate), only the four isolated and non-
degenerate critical points of Figure 3.4(a) are demanded by the
topology of the torus.

Returning to the topological space-time manifold, W' , we
see that we can continue constructing surfaces St , for ever
increasing t , until at some tC > § a critical point of W'
is reached. Beyond tc the topology of the hypersurfaces differs
from that of S0 . However, the change in topology that takes
place at an isolated critical point is small compared to the tre-
mendous complexity of SO ; indicating that most of the prime
factors, Mi , that appear in the factorization (3.3) of SO do
not participate in the topological changes and continue to appear
in the prime factorization of St for t > tc . Since the

topological change takes place at an isolated critical point in

W' , those prime factors of St — and St te that do partici-
c

péte must "meet" at the critical point. Adapting to this
situation the specialized geometry introduced above leads to the
geometric representation of W' shown in Figure 3.5(a), in which
distinct prime 3-manifolds are labelled by distinct integers.

It should be clear,from the above analysis, that all of
the topological complexities of W' are now represented by the
(labelled) graph-~like structure shown in Figure 3.5(b). Each

line corresponds to a prime, compact 3-manifold without boundary;
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Figure 3.5 (a) Different hypersurfaces of W may have

differeﬁt topologies. Changes in the hypersurface topology
take place at isolated critical points (small circles),

with only a small number of prime 3-manifolds, Mi , meeting
at each critical point. (b) Stripping the inessential
details from the geometric picture, (a), leaves a simple

graphical representation of W' .
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Figure 3.5
(a)

(b)
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and the integer(s) associated with it identify (through some as
vet unknown classification scheme) which element of the infinite
collection of distinct prime 3-manifolds is being considered.

The vertices, which correspond to critical points of @®' , need

no labels because they are completely characterized by the labelled
lines that emanate from them. Critical points such as B are
non-essential and can be eliminated by a more careful choice of
the hypersurfaces, St . However, the remaining critical points
(or vertices) are demanded by the topology of W' , just as the
four critical points of Figure 3.4(a) are demanded by the topology
of the torus. The minimal graph, obtained by eliminating all
non-essential vertices (such as B ), is thus unique up to the
operation of flipping external lines from the past to future and
vice versa (which corresponds to choosing a different 2-sphere

in 3W' to bound SO ) .

The vertices labelled A and C in Figure 3.5(b) are
included only because I cannot prove that such vertices do not
exist., The possibility of having vertices such as A seems
remote, however, and I shall assume from now on that they never
occur, If vertices such as C exist, which I also doubt, then
they can be eliminated by assigning the same label to all lines
that can be joined to each other by vertices like C . Thus,
the lines labelled 6 and 8 in Figure 3.5(b) would be assigned

the same label, say 6 . The new graph so obtained would be

uniquely determined by W®' , but it would no longer provide a



Ch. 4 84

faithful representation of this region of topological space-time.

By noting the remarkable similarity between the (not
necessarily faithful) graphical representation of W' and the
Feynman diagrams of quantum field theory, we can now initiate
the transition from topological space-time to geometrical space-
time., Think of W' as not just something that bears a resem-
blance to a Feynman diagram, but rather think of it as being a
Feynman diagram. Think of each line segment in Figure 3.5(b) as
a distinct wvirtual particle; and think of each vertex as an
unrenormalized particle interaction vertex.

The integer labels on the lines in Figure 3.5(b) identify
which prime 3-manifold is to be associated with each line, but
they serve equally well to identify the elementary particles.
There is thus a one-to-one correspondence between the distinct,
prime, compact 3-manifolds without boundary (excluding Sszl )
and the elementary particles of quantum physics. It follows
immediately that there is a countable infinity of distinct
elementary particles, and not just a (small) finite number as
is most often supposed.

Allowed particle interactions - that is, allowed vertices -
are determined in conventional quantum theory by the phenomeno-
logical field theory which the Feynman diagrams represent. In
the topological space-time, however, the rules which determine
what lines may meet at a vertex (critical point) are purely

topological in nature. They are imposed by the simple requirement
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that W be a 4-dimensional manifold, and they may, in principle,
be derived. Unfortunately, this "selection rule" problem seems
just as difficult as, and is clearly dependent upon, the classi-
fication of prime 3-manifolds.

Assume, nonetheless, that the classification and selection
rule problems are solved, yielding a complete array of particles
and interactions. The particles are naturally divided, by the
orientability of their corresponding prime 3-manifolds, into two
classes. One orientability class will yield bosons in geometrical
space-time and the other class will yield fermions. Which is
which must be decided with the aid of the selection rules.
Ultimately, the selection rules must also be called on to identify
the particular prime 3-manifold that corresponds to each known
elementary particle (electron, photon, etc.).

Turn, at last, to field theory. Abandon ®' and replace

it by the topologically trivial manifold, M' = B4 (with B4 the

closed ball in R4 ). Assume, for the time being, that M' has
a globally Minkowskian metric, n ; and construct on M' a
quantum field theory, @ , with fields Yy o i € v , such that

a one-to-one correspondence between the wi's and the prime
3-manifolds (without boundaries) may be found, which places the
interaction vertices of the Feynman graphs of Q in one-to-one
correspondence with the allowed vertices of W' . The parameters

(masses and coupling constants) of Q will, of course, be unde-

termined, but even when this freedom is ignored there may still
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be several theories, Ql ’ Q2 ' Q3 sees, Which satisfy the above
requirements. From this collection of candidate theories choose

the one theory, @ , that is cOmpletely determined by its Feynman

graphs.

Propagators in Q carry the virtual particles through M
with constant velocities; and interactions of the fields take
the simplest possible form that is consistent with the required
vertices. Whenever two or more different particles (fields) have
exactly equivalent, yet distinct, allowed interactions the associ-
ated fields have identical masses and coupling constants in @
(even though these parameters are not yet known). "Internal”
symmetries, such as colour SU(3) , thus arise out of the topology
of W in a natural way.

In order to fix the masses and coupling constants, go back
now and reconsider the geometry of M' . It was necessary to
assume a c-number metric in the first instance because without
it the whole quantum theory, @ , would collapse. However, a
physical metric, g , cannot be arbitrarily imposed, as n was.
Insteaa, g must arise out of a logical analysis of the topology
of W' and, in particular, the graphical representation of &'
obtained above. Since all of this topological information has
already been exploited in the construction of ¢ , our only
option is to have @ determine g in some self-consistent way.
The correct coupling will give g the simplest possible form;

and Mgller's proposal,
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G(T,V) = 8m(T (T, V) (1.1)

seems ideally suited for this purpose. All partial derivatives
in @ are now converted to covariant derivatives (minimal coup-
ling) and the state ) 1is determined by the particular topology
of W . It is to be assumed, as well, that a unique procedure
has been found for eliminating the zero-point energy from TOp
(cf. Section 1); and that Q has been renormalized on the back-
ground g , leaving only "physical" masses and coupling constants.

The specific geometry obtained from (l.l1l) depends not only
on the state, ) , but also on the values, m. , C that are

chosen for the masses and coupling constants. To obtain a

unique space-time geometry require that

g _
. and Se = 0 . (3.4)
i o

Solve these equations to find the unique set of physical masses
and coupling constants and hence the unique geometrical space-
time, {M',q,Q} , corresponding to W' .

I have moved quickly through this formal construction of
geometrical field theory, and in doing so I have passed over many
very real problems, both technical and philosophical. Most of
these are due to the non-linearity of the semi-classical field
theory. As mentioned above, some progress has been made on the
factor ordering (which must be solved to make ( T § finite);

op
but the problem of renormalizing interacting quantum fields on
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a self-consistently determined background geometry remains
untouched. Also required by the non-linearity of (l.1l) are
significant changes, of both an interpretive and a mathematical
nature, in the foundations of gquantum theory.

A new problem, more directly related to my topological
picture of the world, arises from equations (3.4). These equations
may be thought of as a generalized bootstrap, with the mutual
interactions of the elementary particles determining all the
masses and coupling constants. However, because the metric is
a tensor rather than a scalar field it may be impossible to satis-
fy all of the equations (3.4); and even if g had only one degree
of freedom (such as the Newtonian gravitational potential) the
solutions, m. , C, o would, in general, not be constants but
rather functions of the space-time coordinates. 1In this latter
case, one could reasonably expect counter-terms from the renormal-
ization to suppress fluctuations of the parameters, with any
remanent variations having a length scale much larger than the
radius, g/Vg , characteristic of changes in the local geometry.
No great problems will arise in the quantum theory as long as
the geometric radius remains large when compared with the Compton
wavelengths of the particles being considered; but if the masses
and coupling constants change too rapidly, or if it becomes
necessary to consider more than one component of ‘g , then the
entire field theory will collapse. It is worth noting that in

our local region of the universe the metric is, in fact, adequately
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specified by the one component, 90 and that fluctuations of

g about n have characteristic lengths of about 1015m

(at
the surface of the sun) or more. Thus, only in the neighbourhood
of a gravitational shock wave or some other equally catastrophic

gravitational event should the masses and coupling constants be

expected to change noticeably and, perhaps, become ill defined.

4, Summary

Although the technical hurdles still to be cleared are
immense, the rough outline presented above shows that the idea
of extracting field physics from the topology of a 4-dimensional
world is not so crazy as to be impossible. By constructing the
graphical representation of W' (and, by extension, W ) we are
actually led directly to quantum field theory. The intricate
web of virtual particles and interactions is reduced systematic-
ally, through the renormalization procedure, to leave a
"physical" graph that represents physical particles propagating
and interacting in a geometry of their own creation. This
geometry depends on the particular topology of W and is a
c-number field - gravity is not quantized. Unigqueness of the
fields is assured by choosing the masses and coupling constants
such that infinitesimal variations of these parameters leave
the geometry unchanged.

The splitting of space and time is essential in the con-

struction of a semi-local (neither global nor local)
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representation of the topology of W . So also is the dimension,
three, of space, because a non-trivial connected sum decomposition
is possible only in three-dimensions [37]. (A similar decompo-
sition is possible in 2-dimensions, but all factors are
identical.)

In the end, though, the most remarkable and compelling
feature of this topological world-view is its simplicity.
Providing the theory is born out by further analysis, all
perceived physical phenomena, including gravity, quantum effects,
and the detailed behaviour of the elementary particles, will be

understood as characteristics of an unconstrained 4-dimensional

topological manifold.
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CHAPTER 5

CONCLUSION

I have investigated the structure of space-time from two
very different points of view. Adopting a traditional world-view
in Chapters 2 and 3, and restricting attention to the classical
domain, I have developed a general formalism for describing, in
a coordinate-free way, the evolution of the metrical geometry of
the universe. This evolution can be described in terms of tensor
fields intrinsic to the space-like hypersurface only if the

tensor field, g , from which the hypersurface metric, 3

g = 1Ig ,
is constructed, is a (pseudo-)Riemannian metric on space-time.
The invariantly defined, normalized time derivatives of 3g are

then the extrinsic curvature, K the hypersurface projection of

~e

the space-time Ricci tensor, IS and the hypersurface projections

~e

of the invariant derivatives of S , to all orders, along the unit
normals to the hypersurface: H(VKS) R H(VKVKS - VVEES) , etc..

I have shown how to construct dynamical theories of the
evolution of 3g by supposing that 3g and its time derivatives
up to some finite order, m , are essential initial data fields,
but that the (m+l)th time derivative of 3g is some explicit
functional of the lower derivatives and of additional initial

data fields that characterize the distribution of matter in space-

time. The integrability conditions are constraints on the initial
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data which allow one to consistently and unambiguously construct

all time derivatives of 3

g , of order greater than (m+l) , in
terms of the initial data. In the simplest case, m =1 , it is
only possible to construct one consistent set of dynamical and
constraint equations for the metric, and these are the Einstein
gravitational field equations. Higher order gravitational
theories ( with m>1 ) cannot be ruled out, however, nor can any
restrictions be placed on the functional form of the stress-
energy tensor (when m = 1 ), aside from the obvious condition
that it must be a symmetric tensor with vanishing covariant
divergence. |

With the hope of obtaining a unified theory of gravitation
and guantum phenomena, I have proposed, in Chapter 4, that the
objective world underlying all of our perceptions is a 4-dimen-
sional topological manifold, ® , with no physically significant
field structure, but instead an unconstrained and extremely com-
plex global topology. Aided by the connected sum decomposition
theorem for 3-manifolds, I have demonstrated that % may be
uniquely represented by a labelled graph which has properties
remarkably similar to those of the Feynman graphs of QFT. The
lines of this graph correspond to prime 3-manifolds (without
boundary) and the vertices correspond to isolated, non-degenerate
critical points of W . By exploiting this similarity with
Feynman graphs, I have been able to show how the space-time of

our perceptions, with its geometry and quantum fields, might
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arise as a replacement manifold for W , and how the phenomenology
and laws of field physics might emerge from the unconstrained
topological structure of W . Neither geometry nor guantum

fields are fundamental - instead each arises to give meaning to
the other, with geometry providing a substrate for the guantum
fields and the stress-energy of the quantum fields (corresponding
to the unique world, W ) determining the space-time geometry.

In both of these world-views - the geometrical and the
topological - the splitting of space and time hasbplayed a central
role. With each passing instant a new universe, a new face of
the world, is revealed to us. To a very great extent the changes
that take place in the appearance of the universe are predictable,
and the rules used to make predictions are the laws of physics.
Thus, in the geometrical world-view, the evolution of the geo-
metry of space is predicted with the use of the Einstein field
equations; while, in the topological world-view, changes in the
topology of the 3-dimensional slices of W , although random, are
subject to the restrictions imposed by the topological selection
rules. The geometrical replacement manifold for @ bridges the
gap between pure geometry and pure topology, capturing the topo-
logical selection rules in the quantum field theory, @ , and
resurrecting GR in the form of Mgller's semi-classical theory

of gravity.
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APPENDIX I

DIFFERENTIAL MANIFOLDS

Topology, Geometry, and Submanifolds

The purpose of this appendix is to provide an introduction
to the mathematical structures used in the thesis, and also to
establish notational conventions. While I recognize that most
readers will be totally familiar with the items discussed, I
have attempted to make the presentation fairly complete for the
benefit of those who do not have a background in topology or
differential geometry. The emphasis is on definitions and an
understanding of the basic concepts. Most results are stated
without proof.

Numerous comprehensible references exist for this material,
but I shall mention here only those monographs that I have found
particularly useful. 'General Topology' by Lipschutz [38] is a
good primer for the basics of point set topology, leading up to
but not including the definition of a manifold. Munkres [39] pro-
vides clear definitions of manifold, differential structure, and

differential manifold, but does not indicate that it is the field
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structure, rather than the topology, of the real numbers which
gives rise to the possibility of defining derivatives. The funda-
mental definition of derivative is contained in Porteous [40]
along with the basics of algebra, topology and a great wealth of
other information that should be of interest to many physicists,
but which cannot be treated here. Guillemin and Pollack, in their
well illustrated text 'Differential Topology'[33] , explore many
aspects of that vaguely defined field. They develop both differ-
ential and integral calculus on manifolds and show how these
relate to the global structure of differential manifolds. The
properties of differentiable maps from one manifold into another
are shown to depend significantly on the global topologies of the
two manifolds.

Differential geometry, considered in its broadest sense as
the mathematics of differentiable fields on manifolds, is perhaps
the branch of modern mathematics most familiar to physicists. An
excellent classical text is 'Ricci Calculus' by Schouten [21],
but I much prefer the more modern treatment and notation of
Kobayashi and Nomizu [41]. Throughout this thesis I will employ
a coordinate free notation which is similar to that used in
reference [41], however the elegant fibre bundle picture which
they develop will not be used here because it would be overkill

for the simple geometries to be considered.
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1. Topology

Topology is the study of sets and their subsets. Let X
be a non-empty set and let Sub X be the class consisting of all
subsets of X . A subset T of Sub X 1is a topology on X iff

T satisfies

(1) g,x €T ;
(ii) for all aA,BE T , ANB ET ;

(iii) for all a, g $CT , UAiG T
/ :

where @ 1is the null set. The elements of T are called the
open sets of the topology. A set X , together with a topology

T on X , is called a topological space, (X,T) . Normally this

will be denoted by X alone, with the topology T assumed to be
known. It is important to recognize that the open subsets of X
may generally be chosen in more than one way, each different
choice giving rise to a different topology on X .

A base for the topology T on X is a subset BCT such

that every open set A &€ T is the union of members of B . An
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open cover or cover for a topological space (X,T) 1is a subset

S of T such that US = X. Every base is a cover, but not every
cover is a base. If for each cover S8 for X a finite subset
S'" of S covers X then X 1is said to be compact.

A topological space X is a Hausdorff space iff for each

pair of distinct points a,b € X there exist open sets A,B € T
such that a € A, b € B, and A(NB =g .

We are often concerned with maps from one topological space
to another. Let (X,T) and (X',T') Dbe topological spaces. A

function f£:X -+ X' is said to be continuous iff the inverse

image of every open set of X' 1is an open set of X , that is, iff
£1a] €T for all a €T .

Two topological spaces X and X' are called homeomorphic or

topologically equivalent if there exists a bijective map £:X » X'
1

such that both f and f -~ are continuous. The map f 1is

called a homeomorphism.

Let g:W » X be a continuous map with domain a subset of
the topological space W and let a € W\dom g (i.e. a is an
element of the complement of dom g in W ). Then g has a
limit b at a if there exists a continuous map f£f:W » X such
that f(a) = b and f(w) = g(w) for all w € domg . If dom g
is a proper subset of W , a 1is an element of the closure of
dom g , and X 1is a Hausdorff space, then b is unique. Porteous

notes that this is one of the most important features of a
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Hausdorff space [40].

If YCX and Ty = (B, A, = ANY for some A € T} then
(Y,TY) is a topological subspace of (X,T) with the induced
topology. Any subspace of a Hausdorff space is a Hausdorff space.

Let X and Y be topological spaces and let W = XxY be
the cartesian product of the sets X and Y . The product
topology induced on W from X and Y consists of all those
subsets of W that can be constructed as the union of sets of
the form AxB where A 1is open in X and B is open in Y .
Unless specified otherwise, the product XxY of two topological
spaces will be assumed to have the product topology.

Until now I have avoided reference to numbers. However, the
number systems with which we are so familiar play an important
role in topology. Porteous [40] starts with the null set and
builds up the natural numbers through a constructive process.

The non-existence of a largest natural number is the
Archimedian Order Axiom: The set w = {0,1,2,...} of natural
numbers is not bounded from above.
Addition, multiplication, and exponentiation are defined in a set
theoretic fashion. Further constructions yield the integers 2
and the rational numbers Q . The real numbers R are then de-
fined to be the elements of an ordered field with the usual oper-
ations of addition and multiplication, containing Q as an
ordered subfield, such that

(Least Upper Bound Axiom): If A is a subset of R bounded
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from above, then A has a least upper bound.
This is equivalent to the statement that the real numbers are
complete, that is, that every Cauchy sequence of real numbers
converges to a point in R .
The topology of R is defined with the use of the open inter-
vals S = {xta < x <b ; x,a,b € R} . Let ACR . A point p € A

is an interior point of A iff p belongs to some open interval

Sp which is contained in A . The set A is open iff each of
its points is an interior point [38]. Note that the topology of
R does not depend explicitly on the operations of addition or
multiplication, but only on the well ordered property of the real
numbers. As is usual, R" will be used to denote the topological
product RxRx...xR with n factors.

A point x € R" may be represented by the ordered n-tuple

1 n)

of its components (x7, ... ,X . If we exploit the field struc-

ture of the real numbers then we may use these components to

. n
define a norm on R :

1] =/ (xhH?2 + ...+ ™2, (1.1)

For any 6>0 the sets {x € R": |x|<s} , {x € R": |x|<6}, and

{x € R": |x]=6} are called respectively the open ball, the closed
ball, and the sphere in Rr" , centred on the origin, with radius

§ . The origin or additive identity of R” need not play such a
fundamental role, however. Instead we can make use of the metric

or distance function :
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a(x,y) = |x -yl (1.2)
which specifies the euclidean distance between any two points
x and y in R" . An open ball with centre x and radius §

is then the set B(x,8) = {y € R : d(x,y)<8} . The class of all

such open balls provides a base for a metric topology Td on the
set R" . For finite dimension n this metric topology coincides
with the usual topology on R". When no particular point of R"
is singled out as the origin, the space (Rn,Td) is called an

affine space and denoted by A .

One more word must be added to our mathematical vocabulary
before we can define manifold. A set X 1is said to be countable
iff there exists an injective map from X into « , that is, iff
the natural numbers may be used to uniquely label the elements

of X .

A topological manifold M is a Hausdorff space with a count-

able basis, satisfying the following condition: There is a
number n € w such that each point of M has a neighbourhood
homeomorphic with an open set of R” . The number n is the
dimension of M . If A is an open proper subset of M then

M\A is a manifold with boundary. The set A\A , where A is

the closure of A in M , is the common boundary of A and

M\A and is an (n-1)-dimensional manifold. The notation &M is
commonly used to denote the boundary of a manifold-with-boundary
M . For any M , 33M =g .

The spaces A and 3A are examples respectively of n and
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(n-1)~dimensional submanifolds of M . An m-dimensional

submanifold M' of a manifold M , with Osmgn , is a topological

subspace of M which (with the induced topology) is an m-dimen-
sional manifold. A submanifold of dimension zero has the discrete
topology, and consists of isolated points in M .

The product space MxM' of two manifolds M and M' is
a manifold with dim(MxM') = dim(M) + dim(M"') .

It is possible for a manifold to be made up of several dis-
joint pieces. A topological space (manifold) is connected iff it
is not the union of two non-empty disjoint open sets. Unless
specified otherwise a manifold will be assumed to be connected.

Every connected manifold M is metrizable, that is, M ad-

mits a distance function d:MxM > R which is compatible with the

topology of M and which satisfies, for all x,y,z € M

(i) d(x,y) 0 and d(x,x) =0 ; )

W

(ii) d(x,y) d(y,x) ;
v (1.3)

(iii) d(x,2z) d(x,y) + d(y,z) ;

IN

(iv) If x #y then d(x,y) > 0 . J
The open balls defined with the use of d provide a base for the
topology of M . However the topology of M does not uniquely
determine d , nor is every distance function necessarily com-
patible with the topology of M . This will be elaborated in the
next section.

Let M be an n-dimensional manifold with n > 1 . An open

n-cell in M is an n-dimensional submanifold of M which is
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homeomorphic to an open ball in R" . A closed n-cell is a sub-

space S CM which is homeomorphic to a closed ball in R™ . The

boundary 23S of a closed n-cell S 1is an (n-1)-sphere. 1In gen-

eral, an (n-1)-sphere Sn_l is a manifold homeomorphic with a

sphere in R" .

All manifolds of a given dimension are locally the same: if
M is an n-dimensional manifold, then every point x €M is con-
tained in the interior of some closed n-cell in M . When
considered in their entirety, however, two manifolds of the same
dimension can be very different. It is thus the global structure
of M which serves to differentiate it from other n-dimensional
manifolds. This is best illustrated with specific examples in
one and two dimensions:

(i) There are only two distinct (connected) l-dimensional
manifolds (without boundary). These are the line Al = R and the
circle or l-sphere S1 (Figure 1.1). They are distinguished by
the fact that S1 is compact while Al is not. If we choose a
point x € Sl and a closed l-cell C<:Sl; which contains x in
its interior, then Sl\c is an open l-cell which is homeomorphic
with Al . The line can thus be considered as a l-sphere which
has had a closed 1l-cell removed or "cut out".

(ii) There is a countable infinity of distinct 2-manifolds.
They fall into two natural classes, orientable and non-orientable,

and may all be constructed from the 2-sphere 82 by a process of

"cutting and pasting" [42]. Although it is technically a purely
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Figure 1.1 The line and circle are, up to homeomorphism, the

only l-dimensional manifolds.

Figure 1.2 A sphere with (at least) six handles.
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M

Figure 1.3 A crosscap is formed by removing from M the

interior of the 2-cell, C , and then identifying opposite

points on the resulting boundary.

105



Ap. I 106

topological concept we shall delay the definition of orientability
until the next section, relying for the time being on the intuitive
notion that an ofientable surface has two sides (e.g. the inside
and outside of the unit sphere in R3 ) while a non-orientable sur-
face has only one side. Examples of compact orientable 2-manifolds
are the sphere 82 , the torus Slxsl which may also be considered
as a sphere with one handle, and more generally a surface of genus

h or sphere with h handles (Figure 1.2). The simplest compact

non-orientable 2-manifold is a sphere with one crosscap. Being
the non-orientable analogue of a handle, a crosscap is constructed
by removing from a 2-dimensional manifold M an open 2-cell C
and then identifying (with the use of an orientation reversing
homeomorphism f£:3C » 3C ) "opposite" points of the resulting cir-
cular boundary (Figure 1.3). The non-orientable analogue of a

sphere with h handles is a sphere with g crosscaps. A sphere

with 2 crosscaps is topologically equivalent to the well known
Klein bottle. Non-compact 2-manifolds may be constructed from a
compact 2-manifold M by removing from M any number r of
closed 2-cells. The resulting manifold is then said to have r
contours. The general result which emerges is that any 2-dimen-
sional manifold (without boundary) is characterized topologically
by its orientability class, its contour number r , and its number
of handles or crosscaps, h or q . The Moebius band, for example,

is a non-orientable surface with one contour and one crosscap.
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For manifolds of dimension greater than two the problem of
analyzing the global structure becomes much more complex. The
vast field of algebraic topology [42],[43] provides general pro-
cedures for describing some aspects of the global structure of a
given manifold M , but no scheme is known for uniquely identifying
each distinct manifold. It is thought, in fact, that for n34 it
is impossible to find a classification scheme which will uniquely
label each and every n-dimensional manifold (up to homeomorphism)
[32] . The 3-dimensional problem, on the other hand, may be solv-
able. Much progress has been made toward a partial solution and

I believe that some of the results may have a direct and profound

application in physics. This is discussed in detail in
Chapter 4.
2. Differential Manifolds

We return now to the local properties of manifolds. Let U
be an open set of an n-dimensional manifold M and let ¢:U ~» R
be a homeomorphism of U onto an open set in R™ . The pair (U,¢)
is called a chart on M and the n component functions of ¢

determine a local coordinate system in U . An atlas of M is a

family of charts (Ui,¢i) on M such that the open sets Ui
cover M .
A mapping f of an open set of R” into R is said to be
1 m

of class c¥ , r €w , if its m component functions f~, ... ,f

are r times continuously differentiable. If £ 1is real analytic
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then it is said to be of class c“. By C0 we mean that £ is
continuous.

A differential structure D of class CY on an n-manifold M

is an atlas (Ui,¢i) on M such that
(1) If (Ui,¢i) and (Uj,¢j) belong to D , then
-1 n
FEFRE ¢j(UiﬂUj) + R (2.1)

is differentiable of class Cr; and

(ii) The atlas D is maximal with respect to property (i);

i.e., if any chart not in D is adjoined to 0 , then (i) fails.
The manifold M together with the differential structure D is

called an n-dimensional differential manifold of class Cr. A

differential manifold of class C is called a smooth manifold.
Although it does not appear explicitly, we have exploited for the
first time the full field structure of the real numbers in the
definition of a differential structure.

Let M be of class ¢%, r31 , and let x € Uif\Uj . Denote
by aij(x) the nxn-matrix of first partial derivatives of the
functions (2.1) evaluated at ¢j(x) ;, i.e. the Jacobian matrix of
(2.1). The atlas D 1is called oriented if the determinant of
aij(x) is positive for all i,j and x € Uif\Uj . If D, D'
are two distinct oriented atlases of M then the Jacobian matrices
of ¢i¢;l have determinants which, for all 1i,j and x E Uif\Uj ’

are either always positive or always negative. Accordingly, the

orientations of P and V' are said to be either the same or
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opposite. The class of all atlases which have the same orientation

as D 1is called an orientation of M . If M admits an oriented

atlas then it is orientable, and has exactly two orientations. If

no oriented atlas exists for M then M is non-orientable.

Given two differential manifolds M and M' of dimensions
n and n' and of class Cr, a map f:M > M' 1is said to be of
class Ck, k¢r , if for all i,j the map

ve,—1
01€67

. u.NEtw) - &Y (2.2)
J 3 1

is of class cX. The rank of £ at x € Uj is defined to be the
rank of the Jacobian matrix of the map (2.2) at ¢j(x). If

rank £ = n at each point x E M , f is said to be an immersion.
The map £ is proper if the preimage of every compact set in M'
is compact in M . An immersion that is injective and proper is

called an embedding. If £ is a homeomorphism of M and M'

and an immersion then it is called a diffeomorphism. In this case

M and M' are said to be diffeomorphic. An embedding f:M > M'

maps M diffeomorphically onto a submanifold of M' .

Not every manifold admits a differential structure [44], nor
do two different differential structures on the same manifold
always give rise to diffeomorphic differential manifolds. However,
if dim M ¢ 3 or if M is homeomorphic to r™ , n#¥4 , then M
admits a differential structure [32] and all differéntial manifolds

(M,D) are diffeomorphic [39].
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Two important theorems [39],[45] allow us to restrict our
attention to differential manifolds of class C  and to smooth ™)
maps between Cc” manifolds. The first states that if M and M'
are C~ manifolds and f:M - M’ is a Cl immersion, embedding, or
diffeomorphism, then f may be approximated by a c” immersion,
embedding, or diffeomorphism, respectively. The second theorem
states that every differential structure of class Cl on a manifold
M contains a C~ structure. From now on, unless indicated other-
wise by the context, the term manifold will be taken to mean smooth
differential manifold, and all maps between manifolds will be
assumed to be smooth.

Differential manifolds are of special interest to physicists
because they serve as the substrate for all of the geometrical
structures with which we deal. The simplest such structure is a

function or scalar field £f:M - R on the manifold M . We shall

denote the algebra of all such (smooth) functions by F(M). A

differentiable curve, or simply curve, in M 1is a mapping of a

closed interval [a,b]CR into M . If x(t), t 6 [a,b] is a
curve in M , then the vector tangent to x(t) at p=x(t0) is

the derivative operator ip defined by

>

X, (df (x(t))/at) for all £ € F(M) . (2.3)
0

The set of all vectors that can be constructed at p 1is, in a

natural way, an n-dimensional vector space (where n = dim M )

called the tangent space to M at p , and is denoted by Tp(M).
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If (U,9¢) E D is a chart on M such that p € U , and the
quantities ui = ¢i(x), i=l,...,n, are the local coordinates of a
point x , then the curve x(t) has the coordinate representation
xi(t) = ¢i(x(t)) . Within this coordinate picture we find that

(af (x(t) /at) = g(af/aui)p-(dxi(t)/dt)to , (2.4)

so that the vector ip may be represented by the differential

operator
3 i i
X = dx™ (t) /dt 3 /au . 2.5
p = Jl@d(m/an, ¢ /auh, (2.5)
The partial derivative operators (3 /Bul)p, or simply (ai)p ’

are linearly independent vectors at p and constitute a basis,

called a coordinate basis, for _Tp(M) . The numbers

i_ i
Xp = (dx (t)/dt)to (2.6)

are called the components of the vector X in the coordinate basis.

Although it is always possible to represent a vector in this fashion
it is certainly not necessary, nor even desirable in many situ-

ations. In that which follows, a coordinate free formalism will

be used almost exclusively so that the basic geometrical concepts
being investigated will remain in £he fore.

A vector field X on M is an assignment of a vector X

to each point p of M . Acting pointwise on a function £ € F(M),

X generates a new function Xf defined by

(Xf) (p) = %pf ) (2.7)
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If Xf is a smooth function on M for each f € T(M) then X
is a smooth vector field. Just as we are restricting our attention
to smooth maps we shall consider only smooth vector fields, and
we shall use the terms vector field and smooth vector field inter-
changeably. The (infinite dimensional) space of all vector fields
on M will be denoted by T(M) .

Let T;(M) denote the vector space dual to Tp(M) , that is
the space of all linear maps wp:Tp(M) >R . A l-form w on M
is an assignment to each point p € M of an element of T;(M) .
If X € T(M) and w 1is a 1l-form on M , then g(ﬁ) is the

function defined by

0 (p) = w (X)) p€ M . (2.8)

If g(i) € FM) for all X € T(M), then w is a ¢” 1-form (differ-
ential form of degree 1l). As usual, we shall consider only smooth
1-forms, denoting the space of all c” 1-forms by ’T&(M) . The
1-form ggi , 1 E {1,...,n}, dual to the coordinate basis vector

field 31 in the neighbourhood UCM is defined by

ggl(gj) = a; , for all j € {1,...,n} (2.9)
where 63 is the Kronecker § function. Accordingly, dul, cee 4

P
coordinate (basis) l-forms. In the neighbourhood U , any

QE? are linearly independent in Tg(M) and are called the

w € T{(M) may always be written in the form

w = Ju,du" (2.10)
i
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with the components w, functions in 7YM).

The second dual V** of a finite dimensional vector space
V is naturally isomorphic to V . Thus, just as a l-form w maps
T(M) into F(M) , we may think of a vector field X as a map
from 7&(M) into F(M) . As a natural generalization of this
picture we define a tensor Tp of type (r,s) at p € M to be
an (r+s)-linear map from TE(M)X oo XTg(M)XTp(M)X.,. XTp(M) into
the real numbers, where TE(M) appears r times and Tp(M)
appears s times. The space of all such maps is an n"tS_qimen-

sional vector space (TZ)p(M) called the tensor space of type

(r,s) at p . A (smooth) tensor field T of type (r,s) on M is

an assignment, to each point p 6 M , of a tensor Tp of type

(r,s) such that the function T(gl, .o Qr’il' o ,§s)‘ given by

‘ > ->
T{wgr ove s0p s Xy, oo X)) (P)
-> >
= Tp(ﬂlp’ ,_w_rp,le, ,xsp) (2.11)
: : > >
is in F(M) for all Wyr ee ,9{,6 7&(M) and Xy, ... X € Ty .

The space of all such tensor fields on M is denoted ’TE(M) .
The components of T relative to the coordinate bases gi and

ggl defined on U are the functions

T =Tt a3, 3 (2.12)

where i,eee,jisk,eee,1 =1,...,n . Tensors of type (r,0) are said

to be contravariant of degree r and tensors of type (0,s) are said

to be covariant of degree s . A tensor of type (r,s) (r,s # 0)
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is mixed of degree (r+s).

Although the definition of a tensor given above is perhaps
the simplest, it is not the only way in which we can think of
tensors. It is easy to see that a tensor Tp of type (xr,s) may
also be thought of as a (u+v)-linear map (with wugr , vgs) from
TE(M) X oo XTE(M) T (M)x ... xT (M) into (ng‘;)p(M) , where
TE(M) now appears u times and Tp(M) appears Vv times. With

this interpretation, the tensor field T , now written T' , has

the explicit action

> >
T'(El,...,(_u_u,Xl,...,XV) =

= I L Tlepseeesmedut,ee,dud X0 X LB L))
i...J k...1

. Sig...®§j®g33@...®ggl (2.13)

where the sums range from 1 to n and the quantities

k...1 _ 2 e k 1
). = (ai®...®aj®§g ®...8du )p ' (2.14)

(E, .
ice.] P

with (r-u) lower and (s-v) upper indices, are the basis vectors

for (T- %) (M) defined by

s-v'p
k.o..1 1! N RN >
N (du™ ... du? 8,0, 00)
., .
B 6; T '53 ‘5]12 'Gi- (2.15)

The tensor product @ wused in (2.13) is an associative bi-

linear product used to create, from two given tensors of types

(r,s) and (u,v), a new tensor of type (r+u,s+v). For example,
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if 6 and w are two l-forms on M , then 68w is the tensor

field of type (0,2) defined by

88w (T,¥) = 8 (@) (™) . (2.16)

The exterior or wedge product of 6 and « is the 2-form

8Aw = ( 68w - w®8 ) ’ (2.17)

which is an antisymmetric covariant tensor field of degree 2. If

M is an n-manifold, then a p-form, psn , on M 1is a completely
antisymmetric covariant tensor field of degree p. In order to
generalize the wedge product to products of p- and g-forms (p+g < n)
we require that A be associative and bilinear, and we define the
p-form wqA .../\(_u__p constructed from p 1l-forms to be the tensor

that satisfies
> > > i
oA eee Aa (Vs eee V) = Get \]Qi(vj)l] (2.18)

for all ?l, “en ,ﬁp € Ty . 1If 6 1is a p-form and ¢ a g-form,

then it follows that

oA = (-1)PT ga0 . (2.19)

If p+qg > n then 6A¢ = 0 . By convention, a function £ € Fw)
is a O-form and fAg = f-8 .
The primary use of differential forms lies in the theory of

integration on manifolds. Let M be an n-manifold with differ-

ential structure 7D ; let {(UI,¢I)} be a subset of ? such
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that {UI} is a locally finite cover for M ; and let {pa} be
a partition of unity on M subordinate to the cover {UI} [33]-

If w is an n-form on M then for any given «

w, =P e (2.20)

is an n-form on M which is non-zero only in some neighbourhood
U € {U;} . Denoting by u* , i=1,...,n, the local coordinates

induced in this neighbourhood by the map $5 + one can guickly

verify that on UJ

_ 1 n
w, = £,°duA ... Adu (2.21)

for some unique fa € 7RUJ) . The integral of w, on M is
then defined to be
— -1 Jn
Ju = [ £ (¢ (x))d x . (2.22)
J - J
where the integral on the right hand side is the usual integral in
Euclidean n-space. Noting that Zga = w , we can now define the
a

integral of w over M to be

&g =7 &ﬂa . (2.23)
a

If w has compact support then this sum will converge and will be
independent of the choice of cover {UI} or the partition of
unlty {pa} : - . . N . . - P

A very useful generalization of the classical theorems of

Stokes and Gauss to an arbitrary manifold M may also be derived.
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But before stating (without proof) this generalized Stokes' theorem

we must define the exterior derivative operator d . If M is

an n-dimensional manifold and f € F(M) , then we define the 1-form

df = df by
df (V) = Vf for all V € T(M) . (2.24)

More generally, if w is a p-form on M , then the exterior deriv-
ative dw of w is a (p+l)-form that is uniquely determined by

the following properties of d [33]:

(i) d(ey, + 8,) =do, + de, ; (2.25)
(i1)  d(eAg) = (@ns + (-LPoAdy (2.26)
(iii) d(de) = 0 ; (2.27)

which must hold for all p-forms 8,8,,8, and g-forms ¢ on M

In particular, g(ggl) = 0 , where ggl are the coordinate l-forms
in some neighbourhood U . Thus, when « is expanded in the form
il i
w = ) Wy ; 4w A ...Adu P (2.28)
1l<...<1p 1" 7p

its exterior derivative is just

i i
duw I dlwy . Adu A L..adu P (2.29)
P

Now let w be an (n-1l)-form on M and let M' be an
n-dimensional submanifold of M with boundary &M' . A curve in

3M' is, in a natural way, also a curve in M ; so we may always
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think of a vector field V € T(aM') as the restriction to oM’

of some V € T(M) . Similarly, the (n-l)-form & on M restricts
to an (n-l)-form, also denoted by w , on 3M'. Since 3M' 1is an
(n-1) -dimensional manifold, the integral of « over this boundary
may be constructed as in (2.23). If M' is compact and oriented
and 9M' 1is assigned the boundary orientation [33], then the

generalized Stokes' theorem may be concisely expressed in the form

& w = & dw . (2.30)
a [ ] 1

The exterior derivative operator d is intrinsic to the
manifold M on which it is defined. It acts only on differential
forms, raising the degree of a p-form to (p+l). 1In view of (2.24),
it may be considered as a generalization of the gradient operator
of vector calculus. Also intrinsic to each manifold is a second

kind of differential operator + called the Lie derivative. If

X and ¥ are vector fields on M , then the Lie derivative of

Y along X is the vector field £§§ defined by

(£§§)f = [X,Y]f = X(¥£) - Y (Xf) (2.31)

for all f € F(M) . The Lie derivative of a function f along
X is defined to be the function

byf = XE (2.32)

and if w 1is a l-form, then £§ﬂ is the l1-form which satisfies

(t30) () = X(u (V) - w (£3V) (2.33)



Ap. I 119

for all V € T(M) . By requiring that + satisfy Leibniz' rule
for the derivative of a product, we can define the Lie derivative
of an arbitrary tensor field. For example, if T is a tensor

field of type (1,1), then £§T is defined by
BT (w, V) = X(T(w, V) = Tlege,V) - T(a,t3¥) (2.34)

for all w € T;(M) and V€ Ty .
One more geometric structure deserves discussion here. A

Riemannian metric on M is a (smooth) tensor field g of type

(0,2) which is symmetric and positive definite. That is,

(9(T,¥)) (x) = (g(¥,0)) (x) > 0 (2.35)
for all U,V € TM) and x € M, and (9@, ")) (x) = 0 only if
ﬁx = 0 or %x = 0 . Every differential manifold admits a Riemann-

ian metric [45], and any Riemannian metric on M may be used to

construct a distance function compatible with the topology of M .

Let a and b be two points in M and let x(t) be a curve

such that x(ta) a , x(tb) = Db , and ta < tb . Then, if g is
a Riemannian metric on M , the length of the curve x(t) between

a and b is

tb S ) By
l(a,b) [x] = [.° Yg(X(t),X(t)) dt (2.36)
a
where i(t) is the vector tangent to the curve at x(t) (defined
as in equation (2.5)). Each such curve joining a and b has a

well defined length which is greater than zero if a and b are
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distinct. The metric distance between a and b is the least

upper bound of the lengths of all smooth curves connecting a
and b
d(a,b) = lub (1l(a,b) [x]) (2.37)
[x]
The distance function satisfies the conditions (1.3), and the open
balls defined with the use of d provide a base for the topology
of M . Each curve x(t) joining a and b such that
l(a,b) [x] = d(a,b) 1is called a geodesic of the metric g on M .
If we relax the condition that g be a smooth tensor field,
allowing it to be divergent at some point x E M , then we may
still be able to define a distance function és in (2.37), but d
need no longer be compatible with the topology of M . If g
fails to be positive definite, but is still symmetric and non-
singular , then it is called a pseudo-Riemannian metric. In such
a case the distance function d ceases to be well defined, and

g may no longer be used to generate the open sets of M .

3. Affine and Riemannian Geometry

Let M be an n-manifold and let ﬁ,? € T(M) be any two
vector fields. The Lie derivative iﬁﬁ is, in a natural way, also
a vector field on M . However, this derivative cannot be con-
sidered as a derivative of V in the usual sense, since (when
written in a coordinate representation) it depends on the deriv-

atives of the components of U as well as on the components
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themselves. In fact
v, (3.1)

so that U and V are really on an equal footing. In order to
construct derivatives of V more akin to the directional deriv-
atives of vectors in Euclidean space, we must define on M a new

geometric structure V called a covariant derivative. We define

vV such that for any U,V,W € T(M) and £ € F(M) , Vﬁ? € T(M) and

Vo W o= VaW + VoW )
(T +Vv)" U0 v ’
Va(V + W) = V2V + V=W
U Ty U d
r (3.2)
> ->
vfﬁv = fV§V ’
> > _ > >
v (EV) = (UE)V + £v3V . J

From V we can construct two important tensors: a vector-valued

2-form © called the torsion, which is defined by

0 (B, ¥) = vV - v5l - [0,V) ; (3.3)

and the curvature tensor R , which is of type (1,3) and has the

action

=

RO, VW = v (3.4)

The operator (R(ﬁ,%))x , X E M , is a linear transformation of

TX(M) . It is antisymmetric,
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R(U,V) = -R(V,D) , (3.5)

and its trace is a symmetric tensor S called the Ricci tensor:

> >

S(V,W) (x) = Trace(U_ > (R(T,NW) ) . (3.6)
The curvature satisfies the cyclic Bianchi identity,

R(T,NW + RW,HY + REY,MT = vy, + v20(T,7)

+ V2R (W,0) - o(,0(V,W) - 0(W,0(3,N)) - 0(V,0W@,T)) , (3.7)

which follows directly from the Jacobi identity

[[0,V]1,W] + [[W,01,V1 + [[V,W],0] =0 . (3.8)

By setting the covariant derivative of a function equal to

its ordinary derivative:
-5
Vﬁf = Uf ’ (3.9)

and requiring that V satisfy Leibniz' rule for the derivative
of a product, we can define the covariant derivative of an arbi-
trary tensor field. If w is a l-form and T a tensor field of

type (1,1), then the covariant analogues of (2.33) and (2.34) are

Ve () = Tw@) - wwy®h (3.10)
VT (w, V) = B(Tw,V) - T(Vgw. V) = Tlo,93V) . (3.11)

Bianchi's second identity,

> o> > o e~
V?JR(V,W) + V—VGR(U,V) + v%R(W,U)

|
o =

+ R(V,0(W,0)) + )) (3.12)
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is obtained by noting that

1]
<]
b
o
<
=
X

vﬁR(?z,Vq)i - R(vﬁ\?,w’)?c - R(\‘i,vﬁﬁ)i

expanding R in terms of the covariant derivative, and making use
of (3.8) and the tensorial nature of the torsion.
In any coordinate neighbourhood UCM, with local coordinates
ui, the action of V is completely determined by the functions
i

ij , defined by

i _ i >
ij = du (ngak) . (3.13)

These are called the components of the affine connection T asso-
ciated with V , the name reflecting the fact that v allows the
comparison of vectors in the affine tangent spaces of distinct
points along a curve. Let x(t) , t € R, be a curve in M and

>

let § be a vector field on M such that Xx(t )
0

t0 » the tangent vector to the curve at x(to) . A vector field

is, for each

V € T(M) is said to be parallel along the curve x(t) Aif

(V§V)x(t) = f(t)-VX(t) (3.14)

for some function f:R + R and for each t € R . If the vector
field X is itself parallel along the curve x(t) , then the
curve is called a path of the affine.connection ' « A diffeo-

morphism s:R > R may be used to reparameterize the points of
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x(t) , yielding the new curve
x'(t) = x(s(t)) . (3.15)

Moreover, if x(t) is a path of T , then s may always be

chosen so that

bd

(v

FiX") =0 for all t € R , (3.16)

x'(t)

where X' bears the same relation to x'(t) as X bears to x(t).

The path x'(t) 1is then called a geodesic of V , and the parameter

t 1is called an affine parameter for the geodesic.

Now let g be a Riemannian or pseudo-Riemannian metric on M .

The covariant derivative V 1is said to be metrical if, for all

U,v, W€ Ty ,
vﬁg(ﬁ,ﬁ) =0 , (3.17)

or, more simply, Vg = 0 . If V is metrical, then the norm
g(ix(t)’ix(t)) of the tangent vector to a geodesic x(t) is
independent of t . The length (as defined in (2.36)) of the seg-
ment of x(t) between x(ta) and x(tb) is thus directly pro-
portional to the affine length (tb - ta) . In the Riemannian
case this will always be positive, but if g 1is not positive-
definite then there will also exist null geodesics, which have

length zero, and time-like geodesics, whose lengths are pure

imaginary.
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A metrical covariant derivative which has vanishing torsion:

vaV - val = [T,V , (3.18)

U v

is called a Riemannian covariant derivative. Each metric g on

M  uniquely determines a Riemannian covariant derivative Vv on M,
and from now on it is this covariant derivative with which we shall
deal. The manifold M , together with g and Vv , is called a

(pseudo-)Riemannian manifold. The Riemann curvature tensor of

M has, in addition to (3.5) and (3.7) , the symmetries
g X, R(T, V)W) = -g(W,R(T, NI , (3.19)
g X, R(T, VW) = g(F,RW, X)) (3.20)

Since g is non-degenerate, it is possible to find, in a neigh-
bourhood Ux of each point x E M , a set of vector fields Ei ’

i=1,...,n, which are orthogonal,

g(Ki,ﬁj) =0 for i # 3 , (3.21)

and which are normalized to plus or minus one,

g(ﬂi,ﬁi) = e, = %l . (3.22)

The sum o = Zei is the signature of the metric g and is an in-
i
variant quantity. In terms of the Ki , the Ricci tensor of V

may be written

s (G,V) = Zeig(ﬁi,R(Ki,ﬁ)§) } (3.23)
1
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It satisfies the contracted form,

>
geivﬁiS(hi,G) LVS , (3.24)

of the Bianchi identity (3.12), where S on the right hand side

is the Ricci scalar,

s = Je;S(R,,h,) . (3.25)
For any metrical connection T the Ricci tensor is symmetric:

s(U,¥) = s(V,0) ) (3.26)

4, Submanifold Geometry

Of especial importance in the physical discussions of chapters
2 and 3 is the relationship between the geometry of a (pseudo-)
Riemannian manifold and that of its submanifolds. Let S and M
be manifolds of dimensions n and (n+p) , respectively, and let
e:8 > M be an embedding. By identifying S with its image e(S)
in M , one can immediately see that e induces, for each x € S ,
an injective map dex:TX(S) - Te(x)(M) whose co-domain is the

subspace Tg(x)(M) of T (M) consisting of those vectors which

e (x)
are tangent to curves in e(S) . The image of a vector field
v € T(S) is denoted e*3 , and is an assignment to each e(x) € e(S)
of a vector in Tg(x)(M) . Such a vector field is said to be

parallel to the submanifold.

Now let M have defined on it a metric g with Riemannian
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covariant derivative V . The pullback a = e*g of g onto S

is the symmetric tensor field defined by
g@,V) (%) = gle,l, e, (e(x)) (4.1)

for all x € S and all u,v € T(S) . If g is not positive
definite, then 3 need not be positive definite, nor even a metric
on S . However, we shall consider here only those embeddings e
for which 3 is a Riemannian metric.

A general vector field V on e(S) 1is a smooth assignment
of a vector §e(x) € Te(x)(M) to each point e(x). If each §e

(x)

is in Tg(x)(M) , then V is a parallel vector field. (Note that

this has nothing to do with "parallel along a curve".) On the

other hand, a perpendicular vector field v , 1is a vector field

on e(S) such that
g(V,0) (e(x)) = 0 (4.2)

for all x € $ and all parallel vector fields 4 . The space of
all vector fields on e(S) will be denoted by 7;(3) , the space
of parallel vector fields by ‘Tg(S) » and the space of perpendic-
ular vector fields by 'T;(S) . For convenience, the distinction
between v € T(S) and e*315‘72<3) will be dropped.

It is always possible to choose, in some neighbourhood
U C e(S) of each point e(x) of the submanifold, a set Ki ,

i=1,...,n , of orthonormal vector fields in ‘Tg(S)

g(ﬁi,ﬁj) = 644 , (4.3)
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and a corresponding set Ku r vw=1,...,p , of orthogonal unit

vectors in 'T;(S) :

> >
g(nu,nv) = Eusuv = isuv . (4.4)

The projection operator 1 defined, on each such neighbourhood U ,

by

T(V) = Zg(ﬁ,ﬁi)ﬁi (4.5)
1

_ ‘ N _
for all V e”Te(S) +may then be used to project out the parallel

part v = H(%) of the field V . Similarly, the perpendicular

>4 _ =

part of V is V v -yl = Zeug(§,3u)3u . The metric g can
u
now be redefined by setting

> o>

(@, V) = g ,n(¥)) , (4.6)

so that its arguments U and V need no longer be parallel
vector fields.
For all 3,% G‘Tg(S) » the vector field V33 may always be

written in the form

> o> > -
Vv = Vov o+ a(u,v) (4.7)
where %33 € Tg(S) and o (u,v) € T;(S) . It is easy to check
that V satisfies the conditions (3.2) for a covariant derivative.

") ' . .
Moreover, V has vanishing torsion,

333 - V>0 = [Q,V] , (4.8)
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because V has vanishing torsion: If 1,V € TQ(S) , then
[U,v] = V¥ - ¥4 + o (@,9) - (¥,0) (4.9)

will also be a parallel vector field; but this implies that

«(U,v) = a(v,0) , (4.10)
reducing (4.9) to (4.8) . Finally, vV is metrical, and hence

Riemannian, since

UG (V, W) = Gl(g(V,w))

= g(V=V,w) + g(v,V+w)
u u

= S(eaz,a) + 8(3,%3%) (4.11)

for all &, v,w € T)(s) .

The operator o defined by (4.7) is called the second funda-

mental form of S for the embedding e . It is linear in its

first argument since vf33 = fvE3 , and the symmetry condition
(4.10) indicates that o must also be linear in the second argu-

ment. In analogy with 3 ; we set
a(U,V) = a(n(D),n(V)) (4.12)

so that o is a tensorial map from 7;(S)X7;(S) into 'T;(S) .
Making use of the unit vector fields Eu ' a(ﬁ,%)vmay be expanded

in the form

a(U,V) = ZK“(%,?)EU . (4.13)
u
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The geometric objects K" introduced here are p real-valued

symmetric tensor fields on e(S) , called the extrinsic curvatures

of the submanifold in the directions Eu .

If E = Zg“ﬁu is a perpendicular vector field and 3,3 E‘TL(S),
U
then

g(v,73E) = W(g(V,?)) - g(va¥,d)

~g (o (U,Vv) ,£)

= —ZeuKu @, e , (4.14a)
i
and
- > > -> > - >
g(nu,VGE) = u(g(nu,a)) - g(VEnu,s)
= guﬁg“ - zgvg(VaEu,Ev) . (4.14Db)
v

Equations (4.7) and (4.14) are known respectively as the formulas

of Gauss and Weingarten [41]. If e(S) is a hypersurface of M ,

that is, if p = 1 , then there is only one unit normal vector
field n , and one extrinsic curvature K . In this case, which
is the only case that we shall consider from now on, the last term
in (4.14b) vanishes, because g(vaﬁ,ﬁ) =0 .

The hypersurface curvature X is defined to have the action

sl N A VI m+m++ _ N >

R(3,V)w = Vavow VaVow %[u,v]w (4.15)
for all u,v,w € 7&(3) , and to satisfy

R(U,NW = n®@m@,n ) n@)) . (4.16)

It has the usual symmetries (3.5) , (3.7) , (3.19), and (3.20) and
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satisfies the hypersurface analogue,

VR (v,w) + V-K(Q,¥) + V=Rw,d) = 0 , (4.17)

u W v
of the differential identity (3.12). The Ricci tensor of Vo ois
defined by

8@,V = J9, KA, DY) , (4.18)

i

and the Ricci scalar is

n > o

= 4.
g gé(hi,hi) . (4.19)

Any tensor which is left invariant by 1 , as are R and § ; 1s

called a hypersurface tensor field. Although in many cases, such

as K , the tilde will be omitted, a superscript tilde indicates
that the field under consideration is a hypersurface field.
The curvature R of V is related to the hypersurface curv-

ature and the extrinsic curvature through (4.7) . For all

wv,w € Ths)

> > > > - >
R(u,v)w = Va>Vaw - VaVaw = V > > W
u'v v'u [u,v]
= v (VoW + R(V,WR) - va(¥al + K@&,W7)
= V2 (Vow V,wW)n S (Vaw u,w)n
(3,91 u,v],w)n
= R(4,V)w + eJIK(@WKEV,R) - K(V,WKEG,B) IR,

1

+ {Vor(V, W) - ¥or(@,w) }n , (4.20)



Ap. I 132
and, as a result of the symmetry (3.19),

) = VoR(E,R,) I, X (4.21)

1

R(G, V)N = -eJ{V2K(V,R
i

Equation (4,20) is equivalent to the classical equations of

Gauss and Codazzi [41].
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