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Background: what is AdS/CFT

AdS/CFT has a very long history and correspond to a vast
 litterature > 2000 papers 

However only a few portion of the litterature is really adressing the 
question relevant quantum gravity community worried about background 
independence

Original formulation useful for this and still the best refWitten

A key semi-classical understanding of the correspondance 
and “holographic renormalisation group”

Skenderis 

Some claim about the hamilton-jacobi gravity equation 
and renormalisation group equationDe Boer, verlinde

Appendix of a paper in non-gaussianity and dS/CFT picturemaldacena



What is the purpose of  this talk?

However we a priori have an independent definition of what 3D 
quantum gravity is. Independentely of any CFT definition

Can we prove/disprove AdS/CFT? 
several points to adress:

Is there a formulation of AdS/CFT that allows us to prove/disprove it: 
What is the exact dictionary between Quantum gravity and CFT?

Do we care if we are only interested in quantum gravity, why?

My original motivation is related to some recent proposal in 3d: 
A proposal for a CFT “defining” 3d quantum gravity

Is the correspondance between one theory of QG and one CFT or 
one to many?

Is there a background independent formulation of AdS/CFT
Is there one CFT associated to QG or some vaccuum sector of it?

Can we reconstruct quantum gravity from a Boundary CFT?
I want to foster discussions on his subject and propose a precise 
dictionnary, eventually a bulk reconstruction formula.



Basics classical basis of  AdS/CFT

Lets look at a d+1 dimensional spacetime M,g solution of Einstein with cc

Fefferman-Graham expansion: we can always chose      such that 
this is true in a neighborood of  

The einstein equation imply that 

2

Suppose that we have a background Lorentzian spacetime M, g of dimension d+1 solution
of Einstein equations with a cosmological constant λ

Rµν(g) = −ε
d

#2
gµν , Λ = −ε

d(d− 1)

2#2

with ε = −1 for dS and +1 for AdS. This manifold is conformally compact if there exists a
defining function ρ such that ρ−1(0) = ∂M and dρ "= 0 on ∂M and such that the conformally
equivalent metric

#2ḡ = ρ2g (3)

extend smoothly to the boundary of M . The Einstein equations imply that

ḡµν∂µρ∂νρ = ε (4)

on ∂M . The conformal infinity is therefore Lorentzian in AdS and Riemannian in dS. It
is always possible to chose a defining function ρ such that the relation (4) is valid in a
neighborhood of ∂M . For instance, when M is conformally compact we can take as a
defining function #ρ(x) = dḡ(∂M,x) the distance of x from ∂M with respect to ḡ. In this
coordinates the metric can be written

ds2 =
#2

ρ2
(εdρ2 + γρ), ds2 = (εdr2 + #2e

2r
! γr), ρ = exp

(
−r

#

)
(5)

where ρ−2γρ is the metric induced on the surfaces Σρ with ρ = cste and ρ = 0 define the
conformal infinity of M . r is the radial geodesic distance for the physical metric g.

The normal vector and extrinsic curvature of the surfaces Σρ are given by

n = ∂r = −ρ

#
∂ρ, Kν

µ = hνα∇αnµ =
1

2
gναLngαν (6)

where hµν = gµν−εnµnν . This extrinsic curvature can be easily computed in our coordinates
and this gives

#Kj
i =

(
δj
i − ρ(γ−1∂ργ)j

i

)
= δj

i + O(ρ2). (7)

One can easily see that ∂ργ|ρ=0 = 0 thus the extrinsic curvature tensor is proportional to the
identity up to order ρ2 at infinity , this fact plays a key role in the AdS-CFT corrspondance
even at the quantum level. In order to see why lets consider wave function depending on
the metric γij on Σρ and lets consider a radial evolution1 of this wave function towards the
conformal infinity

∂rΨ(g) =

∫

Σρ

∂rγij
δΨ

δγij
∼ρ=0

2

#

∫

Σ0

γij
δΨ

δγij
. (8)

The last operation becomes just the operation of conformal rescaling thus thanks to the
presence of the cosmological constant a radial evolution in the bulk is equal near infinity to
a conformal transformation at the boundary. Clearly infinity is left invariant by the radial
evolution and therefore one expect conformal invariance of the physics described by ψ at
asymptotic infinity. As we will see more precisely this is the essence of the correspondence
between bulk gravity and boundary CFT.

1 Of course this evolution is timelike in the dS case
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coordinates the metric can be written

ds2 =
#2

ρ2
(εdρ2 + γρ), ds2 = (εdr2 + #2e

2r
! γr), ρ = exp

(
−r

#

)
(5)

where ρ−2γρ is the metric induced on the surfaces Σρ with ρ = cste and ρ = 0 define the
conformal infinity of M . r is the radial geodesic distance for the physical metric g.

The normal vector and extrinsic curvature of the surfaces Σρ are given by

n = ∂r = −ρ

#
∂ρ, Kν

µ = hνα∇αnµ =
1

2
gναLngαν (6)

where hµν = gµν−εnµnν . This extrinsic curvature can be easily computed in our coordinates
and this gives

#Kj
i =

(
δj
i − ρ(γ−1∂ργ)j

i

)
= δj

i + O(ρ2). (7)

One can easily see that ∂ργ|ρ=0 = 0 thus the extrinsic curvature tensor is proportional to the
identity up to order ρ2 at infinity , this fact plays a key role in the AdS-CFT corrspondance
even at the quantum level. In order to see why lets consider wave function depending on
the metric γij on Σρ and lets consider a radial evolution1 of this wave function towards the
conformal infinity

∂rΨ(g) =

∫

Σρ

∂rγij
δΨ

δγij
∼ρ=0

2

#

∫

Σ0

γij
δΨ

δγij
. (8)

The last operation becomes just the operation of conformal rescaling thus thanks to the
presence of the cosmological constant a radial evolution in the bulk is equal near infinity to
a conformal transformation at the boundary. Clearly infinity is left invariant by the radial
evolution and therefore one expect conformal invariance of the physics described by ψ at
asymptotic infinity. As we will see more precisely this is the essence of the correspondence
between bulk gravity and boundary CFT.

1 Of course this evolution is timelike in the dS case

2

Suppose that we have a background Lorentzian spacetime M, g of dimension d+1 solution
of Einstein equations with a cosmological constant λ

Rµν(g) = −ε
d

#2
gµν , Λ = −ε

d(d− 1)

2#2

with ε = −1 for dS and +1 for AdS. This manifold is conformally compact if there exists a
defining function ρ such that ρ−1(0) = ∂M and dρ "= 0 on ∂M and such that the conformally
equivalent metric
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defining function #ρ(x) = dḡ(∂M,x) the distance of x from ∂M with respect to ḡ. In this
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defining function #ρ(x) = dḡ(∂M,x) the distance of x from ∂M with respect to ḡ. In this
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AdS/CFT is a equivalence between the quantum gravity partition 
function with fixed Dirichlet boundary condition and the generating 
functional of connected correlation function of CFT theory

Bulk side: chose an Asymptotic AdS spacetime and define the amplitude

namely lets 

3

asymptotic infinity. As we will see more precisely this is the essence of the correspondence
between bulk gravity and boundary CFT.

The AdS/CFT correspondence as originally stated by Witten [? ? ] is a relation
between the partition function of quantum gravity with fixed boundary data in the bulk
and the generating fuctional of connected correlation functions of the CFT on the boundary.
Namely Lets Φi = Φ, gµν , ... denote fields that propagate in the bulk and lets denote the
asymptotic boundary value of this field on Σ0 by φi. On the gravity side, one can define the
amplitude

ΨΣ0(φi) =

∫

Φi|∂M=φi

DΦi eiSB,M (Φi) (9)

Where SB,M is the bulk action and the bulk partition function is evaluated with Dirichlet
boundary condition on the fields. It is important to note that if we where in asymptotically
flat space, asymptotic infinity would be null (∂M = I+ ∪ I− in flat space) but we can still
define the same type of Dirichlet amplitudes if we go a bit away from the take a spacelike
slice . What has been established a long time ago [5] but which is not often stated explicitely
is that this Dirichlet amplitude is, in this case, nothing but the S-matrix functional. The
usual S-matrix elements can be obtained from this functional by taking derivative of the
S-matrix. It is then tentalizing to call the amplitude (13) the “(Ad)S-matrix functional”.
This object is naturally related to the quantum effective action Γ(Φi) which depends on the
bulk fields and is obtained by performing the path integral in the presence of background
bulk fields Φi. Given the quantum effective action Γ(Φi) we evaluate it on-shell and compute
its Hamilton-Jacobi functional

S(φi) ≡ Γ(Φi)| δΓ
δΦi

=0, Φi|∂M=φi
. (10)

This quantum Hamilton-Jacobi functional is then the generating functional for connected
S-matrix elements: Ψ(φi) = eiS(φi), the bulk amplitude is thus an on-shell amplitude.

On the other hand, on the CFT side one associate to each boundary field φi a primary
operator Ôi of the CFT. Different fields φi are characterised not only by there tensorial
structure but also by there properties under conformal transformation of the boundary
metric namely when γ → ρ−2γ the fields transform as φi → ρd−∆iφi. ∆i is then the
conformal dimension of the operator Oi. Given the CFT one can define the generating
functional of connected correlation functions

ZCFT (φi) = 〈e
R
Σ φiÔi〉 (11)

Note that this is an off-shell amplitude. The ADS/CFT correspondance is the statement
that there is an equality

ΨΣ0(φi) = ZCFT (φi). (12)

A. Three puzzles

This original formulation is however not precise enough and lead to several puzzles. Un-
derstanding and resolving these puzzles is a key part of establishing a proper understanding
of the deep nature of AdS/CFT correspondance and will allow us to propose a bulk recon-
struction formula. We can clearly identify three main problems with the original formulation.

The first puzzle is purely technical in nature and has been identified since the begining,
it comes from the fact that the evaluation of the (Ad)S-matrix is at conformal infinity ( it is

Bulk (scalar, gravitons,...) fields
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The first puzzle is purely technical in nature and has been identified since the begining,
it comes from the fact that the evaluation of the (Ad)S-matrix is at conformal infinity ( it is
computed by taking a limit ρ→ 0 towards asymptotic infinity) there are, even at the classical
level, infinities arising in its evaluation that needs to be taken care of and substracted.

The second puzzle is more conceptual but as important. It comes from the fact that
the formulation given here is in term of a background metric since it usually explicitely
refers to the spacetime slicing given by ρ. We will be interested in quantum gravity, and in
quantum gravity the metric is a dynamical object and cannot be fixed beforehand. Even
more, in quantum gravity the quantum spacetime is represented by the knowledge of the
wave function Ψ. The formulation of the correspondance should therefore be independent
of a choice of a background metric but then where is the asymptotic boundary?

Finally, and this is at first sight the most serious puzzle, the two objects in (12) do not
satisfy the same equations! One is a solution of Wheeler de Witt equation which is a second
order differential equation and the other a solution of a conformal Ward identity which is
a first order equation. How could one have equivalence between a second and first order
differential system?

Hopefully this three puzzles are related and can be resolved all together using the idea
of the so called “holographic renormalisation group” which is thus a key and central ingre-
dient for the precise formulation of the AdS/CFT correspondance. We review here some of
the results of the holographic renormalisation group but we hope to give a new and fresh
perspective on some of the results and on the resolutions of these puzzles that will allows us
to go further.

Lets us start to analyse first what type of equations Ψ and ZCFT are supposed to satisfy.
We will look from now on to the case of pure gravity.

B. Gravity equations

Lets us first analyse the gravity sector. In this case we are interested in the following
functional of a metric γ on a d dimensional space Σ. In the case this manifold is the
topological boundary of a d+1 dimensional manifold M , ∂M = Σ

ΨΣ(γ) =

∫

g|∂M=γ

Dg eiSM (g) (13)

This is indeed a formal expression and the whole problem of quantum gravity is to try to
make sense of it. One can hope that there is a precise definition of this object in string
theory or non perturbative gravity which make sense. In our case we will later work in 2+1
gravity where a non perturbative definition of Lorentzian quantum gravity and proposal for
this partition function exists. In higher dimension we can also think about this integral to
be defined at one loop in which case it is perfectly meaningfull, keeping in mind that we
expect any theory of quantum gravity should be in agreement with the one loop results.

In order to write down the Einstein action associated with a d + 1 dimensional manifold
M having a boundary Σ and lets introduce some notations. We denoted by gµν the metric
on M , nµ the unit vector normal to the boundary Σ. We have that n2 = −1 if Σ is spacelike
(dS case) and n2 = +1, if Σ is timelike (AdS case). In both case we denote ε = n2. We also
denote γµν = gµν − εnµnν the boundary metric on Σ and

Kµν = γρ
µ∇ρnν =

1

2
Lnγµν (14)
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How can we have equivalence between solutions of a first and second 
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more, in quantum gravity the quantum spacetime is represented by the knowledge of the
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make sense of it. One can hope that there is a precise definition of this object in string
theory or non perturbative gravity which make sense. In our case we will later work in 2+1
gravity where a non perturbative definition of Lorentzian quantum gravity and proposal for
this partition function exists. In higher dimension we can also think about this integral to
be defined at one loop in which case it is perfectly meaningfull, keeping in mind that we
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In order to write down the Einstein action associated with a d + 1 dimensional manifold
M having a boundary Σ and lets introduce some notations. We denoted by gµν the metric
on M , nµ the unit vector normal to the boundary Σ. We have that n2 = −1 if Σ is spacelike
(dS case) and n2 = +1, if Σ is timelike (AdS case). In both case we denote ε = n2. We also
denote γµν = gµν − εnµnν the boundary metric on Σ and
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is the extrinsic curvature tensor. The action is

SM(g) = −
(

1

2κ

∫

M

dd+1x
√

|g| (R(g)− 2Λ) +
ε

κ

∫

Σ

ddx
√

|γ|K
)

(15)

where2

Λ = −ε
d(d− 1)

2l2
, κ ≡ 8πG, K = Kµνγ
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The first puzzle is purely technical in nature and has been identified since the begining,
it comes from the fact that the evaluation of the (Ad)S-matrix is at conformal infinity ( it is
computed by taking a limit ρ→ 0 towards asymptotic infinity) there are, even at the classical
level, infinities arising in its evaluation that needs to be taken care of and substracted.

The second puzzle is more conceptual but as important. It comes from the fact that
the formulation given here is in term of a background metric since it usually explicitely
refers to the spacetime slicing given by ρ. We will be interested in quantum gravity, and in
quantum gravity the metric is a dynamical object and cannot be fixed beforehand. Even
more, in quantum gravity the quantum spacetime is represented by the knowledge of the
wave function Ψ. The formulation of the correspondance should therefore be independent
of a choice of a background metric but then where is the asymptotic boundary?

Finally, and this is at first sight the most serious puzzle, the two objects in (12) do not
satisfy the same equations! One is a solution of Wheeler de Witt equation which is a second
order differential equation and the other a solution of a conformal Ward identity which is
a first order equation. How could one have equivalence between a second and first order
differential system?

Hopefully this three puzzles are related and can be resolved all together using the idea
of the so called “holographic renormalisation group” which is thus a key and central ingre-
dient for the precise formulation of the AdS/CFT correspondance. We review here some of
the results of the holographic renormalisation group but we hope to give a new and fresh
perspective on some of the results and on the resolutions of these puzzles that will allows us
to go further.

Lets us start to analyse first what type of equations Ψ and ZCFT are supposed to satisfy.
We will look from now on to the case of pure gravity.

B. Gravity equations

Lets us first analyse the gravity sector. In this case we are interested in the following
functional of a metric γ on a d dimensional space Σ. In the case this manifold is the
topological boundary of a d+1 dimensional manifold M , ∂M = Σ

ΨΣ(γ) =

∫

g|∂M=γ

Dg eiSM (g) (13)

This is indeed a formal expression and the whole problem of quantum gravity is to try to
make sense of it. One can hope that there is a precise definition of this object in string
theory or non perturbative gravity which make sense. In our case we will later work in 2+1
gravity where a non perturbative definition of Lorentzian quantum gravity and proposal for
this partition function exists. In higher dimension we can also think about this integral to
be defined at one loop in which case it is perfectly meaningfull, keeping in mind that we
expect any theory of quantum gravity should be in agreement with the one loop results.

In order to write down the Einstein action associated with a d + 1 dimensional manifold
M having a boundary Σ and lets introduce some notations. We denoted by gµν the metric
on M , nµ the unit vector normal to the boundary Σ. We have that n2 = −1 if Σ is spacelike
(dS case) and n2 = +1, if Σ is timelike (AdS case). In both case we denote ε = n2. We also
denote γµν = gµν − εnµnν the boundary metric on Σ and

Kµν = γρ
µ∇ρnν =

1

2
Lnγµν (14)

Where 

Under  bulk diffeomorphism non vanishing at the boundary: 
radial Wheeler-de-Witt equation 

5

is the extrinsic curvature tensor. The action is

SM(g) = −
(

1

2κ

∫

M

dd+1x
√

|g| (R(g)− 2Λ) +
ε

κ

∫

Σ

ddx
√

|γ|K
)

(15)

where2

Λ = −ε
d(d− 1)

2l2
, κ ≡ 8πG, K = Kµνγ

µν

and l is the cosmological scale. The boundary term3 is necessary in order to have a well
defined variational principle [6]. Indeed for an on-shell4 variation we have

δS =
1

2κ

∫

Σ

√
γ Πabδγab, Πab = ε

(
Kab − γabK

)
(16)

One can also easily show that under a bulk diffeomorphism δξgµν = Lξgµν the action trans-
forms as

δξSM(g) = − 1

2κ

∫

∂M

ddxξn

(√
γ (R(g)− 2Λ) + 2Ln(

√
|γ|K)

)
(17)

= − 1

2κ

∫

∂M

ddx
√

γξn

(
R(γ)− 2Λ + ε(K2 −Kb

aK
a
b )

)
(18)

where ξn = ξµnµ and in the last equality we have used the Gauss-codazzi equations to
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Note that thanks to (16) the action of the functional derivative on Ψ amounts to compute
expectation value of Lnγ that is

Π̂ab
x ΨΣ(γ) =

iε

κ
〈Kab(x)− γabK(x)〉γ (19)

where the expectation value is taken with respect to the gravity measure (13). We have
HΨΣ = HaΨΣ = 0 where

Hb = ∇aΠ̂
a
b (20)

H = −εκ2 :

(
Π̂b

aΠ̂
b
a −

Π̂2

d− 1

)
: +R(γ) + ε

d(d− 1)

l2
(21)

This are similar to the usual Hamiltonian constraint equations. Usually, that is in the
hamiltonian picture, these equation are constraint equations which are written only for the
case when γ is a spacelike boundary metric in a Lorentzian manifold. But as we have just
seen seen these equations are Ward identities expressing the invariance of gravity under bulk
diffeomorphisms, they can be derived even in a generalised context where the boundary is
Lorentzian. In the deSitter case since the boundary surfaces are taken to be spacelike these
are exactly the usual Hamiltonian equations. However in the AdS case (21) is no longer
constraint equations but an evolution equation, we will call it (21) the “radial” Wheeler-
de Witt equation. Note also that often, what is consider in the litterature is the case of
Euclidean gravity where iSM is replaced by −SM and γ is Euclidian. We get in this case a
similar equation which can be obtained by the “Wick rotation” Π̂ab → iΠ̂ab, this amounts
to change the sign of the kinetic term in (21).

Note however that since in the AdS case we are dealing with the radial Wheeler-de-
Witt equation, this means we do not expect an a priori relation between Euclidian and
Lorentzian gravity in the AdS case. This is in stark constrast with the usual case where we
can expect some correspondance between Euclidian and Lorentzian solutions of Wheeler-
de-Witt equation. Let us expand a bit on this point; and lets denote the kinetic and
potential term by T ≡ Π̂b

aΠ̂
b
a − Π̂2

d−1 and V = R(γ) − 2Λ. We also denote by HL the
usual hamiltonian constraint operator associated with a slicing by constant time surface in
a Lorentzian manifold and by HE the constraint associated to an arbitrary slicing in an
Euclidean manifold, these two operators are related since

HL = κ2T + V, HE = −κ2T + V.

In both cases the state ψ(γ) anihilated by HL,E is a functional of a d dimensional Riemmanian
metric. Now suppose that ψE(γ) = exp(− 1

κΓ(γ, κ)), Γ(γ, κ) ≡
∑∞

n=0 κnΓn(γ), with Γn real,
is a solution of the Euclidean hamiltonian constraints then ψL(γ) = exp( i

κΓ(γ, iκ)) is a
solution of the Lorentzian constraints. So there is a clear mapping between the lorentzian
and euclidean sector in this case. This is the reason behind Hartle-Hawking proposal.

Now in the case of AdS the constraint satisfied by the AdS-matrix functional is of the
form

H(radial)
L = −κ2T + V,

moreover the boundary metric is lorentzian instead of riemmanian, since it correspond to
a radial slicing. There is no longer, in this case, any simple correspondence between the
lorentzian and Euclidean solution. The only correspondance one can naively think of is to
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analytically continue ψL(γ) is a functional of non degenerate complex metrics and evaluate it

on a riemmanian section. Since H(radial)
L and HE are the same this will give a solution of HE.

However this solution will be of the form exp( i
κΓ(γE)) and not of the form exp(− 1

κΓ(γE)).
So this will give a solution of Riemannian quantum gravity but not of Euclidian gravity. One
other think that we can try is to try to perform a Wick rotation t → it of the action Γ(γ).
Such a rotation can be performed meaningfully if γ possess at least one timelike killing vec-
tor field. This might give a prescription for ψE(γ) in terms of ψL(γ) for stationary γ. Since
in general there is no preferred timelike Killing vector field for a general γ it is not really
clear how to extend this prescription meaningfully to general metrics. Any such extension
would amount to pick a particular gauge and an associated preferred time coordinate. Even
if we do so it is even less clear wether such a extension if it exists maps solutions of HL

to solutions of HE (We know that such extension do not generally maps classical euclidean
solutions to Lorentzian classical solutions 5 ). This lead us to the conclusion that one cannot
expect beforehand a deep relationship between Euclidean and Lorentzian quantum gravity
in the AdS/CFT correspondance as it is often (if not always) assumed. One may be able
to establish such Euclidian/Lorentzian correspondance in some limited regime (perturba-
tion around static boundary space, for instance) but so far this is still an interesting open
question.

The dots : : in equation (21) denotes normal ordering terms necessary to define the Kinetic
term of the hamiltonian. From the derivation one sees that the action of the kinetic term
on Ψ(g) leads to evaluation of the two point function at coincident point and the associate
divergence needs to be substracted following a prescription initially designed by Symanzik
[9]. Namely if we denote by GD

αβµν(x, y) the two point function 〈gαβ(x)gµν(y)〉 calculated
with Dirichlet boundary6 condition and Gabcd = 1/2(γacγbd + γbcγad)− γabγcd the boundary
supermetric. One consider the boundary to boundary propagator

Kab
cd(x, y) = Gabmn −→L nGD

mncd(x, y)
←−L n

∣∣∣
x,y∈∂M

where Ln denotes the Lie derivative with respect to the normal to the boundary. Now the
boundary to boundary propagator can be split into a part which is singular in the coincident
limit and a regular part. The singular part KS of this propagator needs to be substracted
from the kinetic term of the hamiltonian in order to get a well defined hamiltonian this is
what the normal order .

(
Π̂b

aΠ̂
b
a −

Π̂2

d− 1

)
:≡ GabcdΠ̂

ab
x Π̂cd

x −KS
ab
ab(x, x)

5 Except in three dimensions where it is possible to find such extension since Lorentzian and Euclidian
classical spacetime are respectively quotient of AdS3 (resp. H3) by discrete subgroup G of SL(2, R) ×
SL(2, R) (resp. SL(2, C)). Fixing a set of free generators of G ⊂ SL(2, R)×SL(2, R) we can analytically
these to a set of generator of SL(2, C) [11]. Such an extension is uniquely defined only for static spacetime
but in general there is an infinite number of inequivalent extensions. Moreover any such extension generally
maps many Lorentzian solution to the same Euclidean solution.

6 More precisely we should fix Dirichlet conditions gab = γab on the metric components tangential to the
boundary. And we should use Neuman conditions induced by the gauge fixing on the other components
g0a which depend on the normal direction to the boundary [? ], (see appendix).

denotes renormalisation that can be carried out explicitely at any 
loop order by substracting the singular part of Symanzyk 81

the boundary to boundary propagator
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other think that we can try is to try to perform a Wick rotation t → it of the action Γ(γ).
Such a rotation can be performed meaningfully if γ possess at least one timelike killing vec-
tor field. This might give a prescription for ψE(γ) in terms of ψL(γ) for stationary γ. Since
in general there is no preferred timelike Killing vector field for a general γ it is not really
clear how to extend this prescription meaningfully to general metrics. Any such extension
would amount to pick a particular gauge and an associated preferred time coordinate. Even
if we do so it is even less clear wether such a extension if it exists maps solutions of HL

to solutions of HE (We know that such extension do not generally maps classical euclidean
solutions to Lorentzian classical solutions 5 ). This lead us to the conclusion that one cannot
expect beforehand a deep relationship between Euclidean and Lorentzian quantum gravity
in the AdS/CFT correspondance as it is often (if not always) assumed. One may be able
to establish such Euclidian/Lorentzian correspondance in some limited regime (perturba-
tion around static boundary space, for instance) but so far this is still an interesting open
question.

The dots : : in equation (21) denotes normal ordering terms necessary to define the Kinetic
term of the hamiltonian. From the derivation one sees that the action of the kinetic term
on Ψ(g) leads to evaluation of the two point function at coincident point and the associate
divergence needs to be substracted following a prescription initially designed by Symanzik
[9]. Namely if we denote by GD

αβµν(x, y) the two point function 〈gαβ(x)gµν(y)〉 calculated
with Dirichlet boundary6 condition and Gabcd = 1/2(γacγbd + γbcγad)− γabγcd the boundary
supermetric. One consider the boundary to boundary propagator

Kab
cd(x, y) = Gabmn −→L nGD

mncd(x, y)
←−L n

∣∣∣
x,y∈∂M

where Ln denotes the Lie derivative with respect to the normal to the boundary. Now the
boundary to boundary propagator can be split into a part which is singular in the coincident
limit and a regular part. The singular part KS of this propagator needs to be substracted
from the kinetic term of the hamiltonian in order to get a well defined hamiltonian this is
what the normal order .

(
Π̂b

aΠ̂
b
a −

Π̂2

d− 1

)
:≡ GabcdΠ̂

ab
x Π̂cd

x −KS
ab
ab(x, x)

5 Except in three dimensions where it is possible to find such extension since Lorentzian and Euclidian
classical spacetime are respectively quotient of AdS3 (resp. H3) by discrete subgroup G of SL(2, R) ×
SL(2, R) (resp. SL(2, C)). Fixing a set of free generators of G ⊂ SL(2, R)×SL(2, R) we can analytically
these to a set of generator of SL(2, C) [11]. Such an extension is uniquely defined only for static spacetime
but in general there is an infinite number of inequivalent extensions. Moreover any such extension generally
maps many Lorentzian solution to the same Euclidean solution.

6 More precisely we should fix Dirichlet conditions gab = γab on the metric components tangential to the
boundary. And we should use Neuman conditions induced by the gauge fixing on the other components
g0a which depend on the normal direction to the boundary [? ], (see appendix).
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The first puzzle is purely technical in nature and has been identified since the begining,
it comes from the fact that the evaluation of the (Ad)S-matrix is at conformal infinity ( it is
computed by taking a limit ρ→ 0 towards asymptotic infinity) there are, even at the classical
level, infinities arising in its evaluation that needs to be taken care of and substracted.

The second puzzle is more conceptual but as important. It comes from the fact that
the formulation given here is in term of a background metric since it usually explicitely
refers to the spacetime slicing given by ρ. We will be interested in quantum gravity, and in
quantum gravity the metric is a dynamical object and cannot be fixed beforehand. Even
more, in quantum gravity the quantum spacetime is represented by the knowledge of the
wave function Ψ. The formulation of the correspondance should therefore be independent
of a choice of a background metric but then where is the asymptotic boundary?

Finally, and this is at first sight the most serious puzzle, the two objects in (12) do not
satisfy the same equations! One is a solution of Wheeler de Witt equation which is a second
order differential equation and the other a solution of a conformal Ward identity which is
a first order equation. How could one have equivalence between a second and first order
differential system?

Hopefully this three puzzles are related and can be resolved all together using the idea
of the so called “holographic renormalisation group” which is thus a key and central ingre-
dient for the precise formulation of the AdS/CFT correspondance. We review here some of
the results of the holographic renormalisation group but we hope to give a new and fresh
perspective on some of the results and on the resolutions of these puzzles that will allows us
to go further.

Lets us start to analyse first what type of equations Ψ and ZCFT are supposed to satisfy.
We will look from now on to the case of pure gravity.

B. Gravity equations

Lets us first analyse the gravity sector. In this case we are interested in the following
functional of a metric γ on a d dimensional space Σ. In the case this manifold is the
topological boundary of a d+1 dimensional manifold M , ∂M = Σ

ΨΣ(γ) =

∫

g|∂M=γ

Dg eiSM (g) (13)

This is indeed a formal expression and the whole problem of quantum gravity is to try to
make sense of it. One can hope that there is a precise definition of this object in string
theory or non perturbative gravity which make sense. In our case we will later work in 2+1
gravity where a non perturbative definition of Lorentzian quantum gravity and proposal for
this partition function exists. In higher dimension we can also think about this integral to
be defined at one loop in which case it is perfectly meaningfull, keeping in mind that we
expect any theory of quantum gravity should be in agreement with the one loop results.

In order to write down the Einstein action associated with a d + 1 dimensional manifold
M having a boundary Σ and lets introduce some notations. We denoted by gµν the metric
on M , nµ the unit vector normal to the boundary Σ. We have that n2 = −1 if Σ is spacelike
(dS case) and n2 = +1, if Σ is timelike (AdS case). In both case we denote ε = n2. We also
denote γµν = gµν − εnµnν the boundary metric on Σ and

Kµν = γρ
µ∇ρnν =

1

2
Lnγµν (14)

Under  bulk diffeomorphism non vanishing at the boundary: 
radial Wheeler-de-Witt equation 
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This renormalisation procedure which was first proposed and analyse by Symanzik [9] of the
can be carried out loop order by loop order [? ]. For instance at one loop one can evaluate the
coincident limit of KS by heat kernel methods, This functional is a local functional of Kab and
gab. The terms dependent on Kab can be reabsorbed into a redefinition of the kinetic terms
while the terms dependent on gab into a redefinition of the potential terms which cncels the
divergence up to two loop. thi The basic idea is to evaluate In a renormalisable theory one can
sh This procedure has been analysed by Symanzik some time ago preserves the Schrodinger
form of the Hamiltonian, that is the hamiltonian operator is always at most quadratic in the
functional derivatives Π̂ab. This follows from the fact that the renormalisation factor which
is constructed in terms of the boundary to boundary propagator contains at most two time
derivative very fishy at this stage!.

The last point we want to stress concerning the Hamiltonian equation is the obvious fact
that this is a second differential equation. For comparison with the CFT equations It is
convenient to decompose the metric in terms of a Liouville field φ and a determinant one
metric γ = e2φγ̂, det(γ̂) = 1. We define e−dφP̂ a

b ≡ Π̂a
b −

δa
b
d Π̂ the traceless derivative operator

that acts on γ̂ only preserves its unimodularity and commute with δ/δφ. The hamiltonian
equation in this splitting can be written as

H =
κ2

d(d− 1)

(
δ

δφ

)2

− κ2e−2dφP̂ 2 + e−2φR(γ̂)− 2(d− 1)
(
!̂φ + (d− 2)(∇̂φ)2

)
+

d(d− 1)

l2

where P̂ 2 = P̂ a
b P̂ b

a . This equation is a relativistic equation ( if one think that φ plays
a role analogous to time) which control the liouville field dependance of dependance of
Ψ(e2φγ̂). Such dependence is in principle (not in practice) determined once both Ψ(γ̂) and
δ
δφΨ(e2φγ̂)|φ=0 are given. This means that one expect the existence of (highly non trivial)

propagating kernels Kφ, K̃φ such that

Ψ(e2φγ̂) =

∫
Dγ̂′

(
Kφ(γ̂, γ̂′)Ψ(γ̂′) + K̃φ(γ̂, γ̂′)

δΨ

δφ
(γ̂′)

)
. (22)

In any case the first point is that such a partition function depends on a choice of a
boundary metric γ and of a topological manifold but do not depend on some auxiliary
asymptotically ADS spacetime and corresponding bulk metric. In fact because we are dealing
with quantum gravity the functional Ψ represent the quantum spacetime. This quantum
spacetime is however represented only through its dependence on the boundary metric γ.
In a classical spacetime this boundary metric is the metric induced on a slice and changing
the metric γ amounts to moving the slice inside the spacetime. Now we are interested in
moving the slice represented by γ onto asymptotic infinity the natural proposal is that this
correspond to consider the asymptotic behavior of the wave function Ψ(ρ−2γ) when ρ→ 0.
So Asymptotic infinity in this context is not a specific locus in a background metric but
comes from the asymptotic behavior of the functional Ψ(γ) under infinite rescaling. This is
a simple but very important point that allows us to talk about asymptotically AdS spacetime
in quantum gravity without having to introduce a background spacetime.

This procedure has been analysed by Symanzik some time ago following

C. CFT equations

The analysis of the CFT side is much simpler. Since we work with pure gravity we are
only interested by the equation satisfied by the CFT partition function ZCFT (γ) which also
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where P̂ 2 = P̂ a
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a . This equation is a relativistic equation ( if one think that φ plays
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In any case the first point is that such a partition function depends on a choice of a
boundary metric γ and of a topological manifold but do not depend on some auxiliary
asymptotically ADS spacetime and corresponding bulk metric. In fact because we are dealing
with quantum gravity the functional Ψ represent the quantum spacetime. This quantum
spacetime is however represented only through its dependence on the boundary metric γ.
In a classical spacetime this boundary metric is the metric induced on a slice and changing
the metric γ amounts to moving the slice inside the spacetime. Now we are interested in
moving the slice represented by γ onto asymptotic infinity the natural proposal is that this
correspond to consider the asymptotic behavior of the wave function Ψ(ρ−2γ) when ρ→ 0.
So Asymptotic infinity in this context is not a specific locus in a background metric but
comes from the asymptotic behavior of the functional Ψ(γ) under infinite rescaling. This is
a simple but very important point that allows us to talk about asymptotically AdS spacetime
in quantum gravity without having to introduce a background spacetime.
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C. CFT equations

The analysis of the CFT side is much simpler. Since we work with pure gravity we are
only interested by the equation satisfied by the CFT partition function ZCFT (γ) which also

8

This renormalisation procedure which was first proposed and analyse by Symanzik [9] of the
can be carried out loop order by loop order [? ]. For instance at one loop one can evaluate the
coincident limit of KS by heat kernel methods, This functional is a local functional of Kab and
gab. The terms dependent on Kab can be reabsorbed into a redefinition of the kinetic terms
while the terms dependent on gab into a redefinition of the potential terms which cncels the
divergence up to two loop. thi The basic idea is to evaluate In a renormalisable theory one can
sh This procedure has been analysed by Symanzik some time ago preserves the Schrodinger
form of the Hamiltonian, that is the hamiltonian operator is always at most quadratic in the
functional derivatives Π̂ab. This follows from the fact that the renormalisation factor which
is constructed in terms of the boundary to boundary propagator contains at most two time
derivative very fishy at this stage!.

The last point we want to stress concerning the Hamiltonian equation is the obvious fact
that this is a second differential equation. For comparison with the CFT equations It is
convenient to decompose the metric in terms of a Liouville field φ and a determinant one
metric γ = e2φγ̂, det(γ̂) = 1. We define e−dφP̂ a

b ≡ Π̂a
b −

δa
b
d Π̂ the traceless derivative operator

that acts on γ̂ only preserves its unimodularity and commute with δ/δφ. The hamiltonian
equation in this splitting can be written as

H =
κ2

d(d− 1)

(
δ

δφ

)2

− κ2e−2dφP̂ 2 + e−2φR(γ̂)− 2(d− 1)
(
!̂φ + (d− 2)(∇̂φ)2

)
+

d(d− 1)

l2

where P̂ 2 = P̂ a
b P̂ b

a . This equation is a relativistic equation ( if one think that φ plays
a role analogous to time) which control the liouville field dependance of dependance of
Ψ(e2φγ̂). Such dependence is in principle (not in practice) determined once both Ψ(γ̂) and
δ
δφΨ(e2φγ̂)|φ=0 are given. This means that one expect the existence of (highly non trivial)

propagating kernels Kφ, K̃φ such that

Ψ(e2φγ̂) =

∫
Dγ̂′

(
Kφ(γ̂, γ̂′)Ψ(γ̂′) + K̃φ(γ̂, γ̂′)

δΨ

δφ
(γ̂′)

)
. (22)
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with quantum gravity the functional Ψ represent the quantum spacetime. This quantum
spacetime is however represented only through its dependence on the boundary metric γ.
In a classical spacetime this boundary metric is the metric induced on a slice and changing
the metric γ amounts to moving the slice inside the spacetime. Now we are interested in
moving the slice represented by γ onto asymptotic infinity the natural proposal is that this
correspond to consider the asymptotic behavior of the wave function Ψ(ρ−2γ) when ρ→ 0.
So Asymptotic infinity in this context is not a specific locus in a background metric but
comes from the asymptotic behavior of the functional Ψ(γ) under infinite rescaling. This is
a simple but very important point that allows us to talk about asymptotically AdS spacetime
in quantum gravity without having to introduce a background spacetime.
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sh This procedure has been analysed by Symanzik some time ago preserves the Schrodinger
form of the Hamiltonian, that is the hamiltonian operator is always at most quadratic in the
functional derivatives Π̂ab. This follows from the fact that the renormalisation factor which
is constructed in terms of the boundary to boundary propagator contains at most two time
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d(d− 1)
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δ

δφ

)2

− κ2e−2dφP̂ 2 + e−2φR(γ̂)− 2(d− 1)
(
!̂φ + (d− 2)(∇̂φ)2
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d(d− 1)

l2
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b P̂ b
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CFT equations

For d odd

A CFT partition function is by definition a solution of two equations
diffeomorphism constraints and a conformal Ward identity

9

depends like Ψ on a d-dimensional metric γ. Such a CFT satisfies also two equations. The
first one express the invariance under diffeomorphism

∇aΠ̂
a
bZCFT (γ) = 0, (23)

and the second is the conformal ward identity

Π̂xZCFT (γ) =
1
√

γ

δ

δφ(x)
ZCFT (e2φγ)

∣∣∣∣
φ=0

= iAd(x)ZCFT (γ) (24)

where Ad(x) is the anomaly, it is zero in odd dimensions, wherehas in even dimension it can
be expand in terms of a basis of certain curvature invariants of dimension 2d which should
satisfy the Wess-Zumino consistency condition. In dimension 2 and 4 it is given by

A2(x) =
c

12π
R(x) (25)

A4(x) =
1

16π

(
aE(x)− cW 2(x) + α!R(x)

)
(26)

where c and a are the two central charges. W 2 is the square of the Weyl Tensor and E is
the Euler density. The term proportional to α is not an anomaly since it can be obtained
from the variation of a local action

∫ √
γR2.

W 2 = R2
abcd − 2R2

ab +
1

3
R2, (27)

E =

(
1

2
εef
abRefcd

)2

= R2
abcd − 4R2

ab + R2. (28)

One remark that when a = c the 4 dimensional conformal anomaly simplifies and contains
no square of the Riemann tensor. Interestingly this is exactly the anomaly that arise from
the semi-classical AdS/CFT correspondance [? ? ].

The conformal ward identity is only a first order equation which can be explicitely inte-
grated out. In two dimensions the integrated Ward identity is given by

ZCFT (e2φγ) = e
ic

12π SL(φ,γ)ZCFT (γ̂) (29)

where the liouville action is

SL(φ, γ) =

∫

Σ

√
γ (−φ!φ + φR(γ)) . (30)

In dimension 4 it is also possible to integrate out the anomaly. Quite remarkably, and this
fact seems to have been unnoticed in the litterature, in the gravitational case a = c the
integrated anomaly is also of the Liouville form7 (29)

SL(φ, γ) =

∫

Σ

√
γ

(
1

2
φ!4φ + φQ4(γ)

)
(31)

7 where the prefactor is now c
2π and one need to chose α = 4
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2π and one need to chose α = 4

Invariance under local rescaling            Anomaly
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+ modular invariance



Resolution of  the puzzles
Lets start by adressing the problem of background independence

The key point is to remember that at the classical level the existence 
and the property of asymptotic infinity follows dynamically from the 
einstein equation and  the assumption that the limit 

2

Suppose that we have a background Lorentzian spacetime M, g of dimension d+1 solution
of Einstein equations with a cosmological constant λ

Rµν(g) = −ε
d

#2
gµν , Λ = −ε

d(d− 1)

2#2

with ε = −1 for dS and +1 for AdS. This manifold is conformally compact if there exists a
defining function ρ such that ρ−1(0) = ∂M and dρ "= 0 on ∂M and such that the conformally
equivalent metric

#2ḡ = ρ2g (3)

extend smoothly to the boundary of M . The Einstein equations imply that

ḡµν∂µρ∂νρ = ε (4)

on ∂M . The conformal infinity is therefore Lorentzian in AdS and Riemannian in dS. It
is always possible to chose a defining function ρ such that the relation (4) is valid in a
neighborhood of ∂M . For instance, when M is conformally compact we can take as a
defining function #ρ(x) = dḡ(∂M,x) the distance of x from ∂M with respect to ḡ. In this
coordinates the metric can be written

ds2 =
#2

ρ2
(εdρ2 + γρ), ds2 = (εdr2 + #2e

2r
! γr), ρ = exp

(
−r

#

)
(5)

where ρ−2γρ is the metric induced on the surfaces Σρ with ρ = cste and ρ = 0 define the
conformal infinity of M . The surfaces Σρ are spacelike in the dS case and timelike in AdS
case. In both cases ε = n2 is the square norm of the normal vector to Σρ. In the AdS case
r is the radial geodesic distance for the physical metric g.

The normal vector and extrinsic curvature of the surfaces Σρ are given by

n = ∂r = −ρ

#
∂ρ, Kν

µ = hνα∇αnµ =
1

2
hναLngαµ (6)

where hµν = gµν−εnµnν . This extrinsic curvature can be easily computed in our coordinates
and this gives

#Kj
i =

(
δj
i − ρ(γ−1∂ργ)j

i

)
= δj

i + O(ρ2). (7)

One can easily see that ∂ργ|ρ=0 = 0 thus the extrinsic curvature tensor is proportional to the
identity up to order ρ2 at infinity , this fact plays a key role in the AdS-CFT corrspondance
even at the quantum level. In order to see why lets consider wave function depending on
the metric γij on Σρ and lets consider a radial evolution1 of this wave function towards the
conformal infinity

∂rΨ(γρ) =

∫

Σρ

∂rγij
δΨ

δγij
∼ρ=0

2

#

∫

Σ0

γij
δΨ

δγij
. (8)

The last operation becomes just the operation of conformal rescaling thus thanks to the
presence of the cosmological constant a radial evolution in the bulk is equal near infinity to
a conformal transformation at the boundary. Clearly infinity is left invariant by the radial
evolution and therefore one expect conformal invariance of the physics described by ψ at

1 Of course this evolution is timelike in the dS case

3

γ →∞
γ

Cm
j+,j− ≤ e−βm

β = ln

(
γ + 1
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ρ→ 0 exists

At the quantum level the quantum spacetime is represented by 

4

The first puzzle is purely technical in nature and has been identified since the begining,
it comes from the fact that the evaluation of the (Ad)S-matrix is at conformal infinity ( it is
computed by taking a limit ρ→ 0 towards asymptotic infinity) there are, even at the classical
level, infinities arising in its evaluation that needs to be taken care of and substracted.

The second puzzle is more conceptual but as important. It comes from the fact that
the formulation given here is in term of a background metric since it usually explicitely
refers to the spacetime slicing given by ρ. We will be interested in quantum gravity, and in
quantum gravity the metric is a dynamical object and cannot be fixed beforehand. Even
more, in quantum gravity the quantum spacetime is represented by the knowledge of the
wave function Ψ. The formulation of the correspondance should therefore be independent
of a choice of a background metric but then where is the asymptotic boundary?

Finally, and this is at first sight the most serious puzzle, the two objects in (12) do not
satisfy the same equations! One is a solution of Wheeler de Witt equation which is a second
order differential equation and the other a solution of a conformal Ward identity which is
a first order equation. How could one have equivalence between a second and first order
differential system?

Hopefully this three puzzles are related and can be resolved all together using the idea
of the so called “holographic renormalisation group” which is thus a key and central ingre-
dient for the precise formulation of the AdS/CFT correspondance. We review here some of
the results of the holographic renormalisation group but we hope to give a new and fresh
perspective on some of the results and on the resolutions of these puzzles that will allows us
to go further.

Lets us start to analyse first what type of equations Ψ and ZCFT are supposed to satisfy.
We will look from now on to the case of pure gravity.

B. Gravity equations

Lets us first analyse the gravity sector. In this case we are interested in the following
functional of a metric γ on a d dimensional space Σ. In the case this manifold is the
topological boundary of a d+1 dimensional manifold M , ∂M = Σ

ΨΣ(γ) =

∫

g|∂M=γ

Dg eiSM (g) (13)

This is indeed a formal expression and the whole problem of quantum gravity is to try to
make sense of it. One can hope that there is a precise definition of this object in string
theory or non perturbative gravity which make sense. In our case we will later work in 2+1
gravity where a non perturbative definition of Lorentzian quantum gravity and proposal for
this partition function exists. In higher dimension we can also think about this integral to
be defined at one loop in which case it is perfectly meaningfull, keeping in mind that we
expect any theory of quantum gravity should be in agreement with the one loop results.

In order to write down the Einstein action associated with a d + 1 dimensional manifold
M having a boundary Σ and lets introduce some notations. We denoted by gµν the metric
on M , nµ the unit vector normal to the boundary Σ. We have that n2 = −1 if Σ is spacelike
(dS case) and n2 = +1, if Σ is timelike (AdS case). In both case we denote ε = n2. We also
denote γµν = gµν − εnµnν the boundary metric on Σ and

Kµν = γρ
µ∇ρnν =

1

2
Lnγµν (14)

Where is asymptotic infinity ?

If we remember that at the classical level the induced metric scales as  
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ρ→ 0
γ

ρ2

One needs to look at the behavior of 
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classical spacetime it represents

for a solution of WdW
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ρ→ 0

rescaling in 
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ρ→ 0correspond to a radial motion of the slice 
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The first puzzle is purely technical in nature and has been identified since the begining,
it comes from the fact that the evaluation of the (Ad)S-matrix is at conformal infinity ( it is
computed by taking a limit ρ→ 0 towards asymptotic infinity) there are, even at the classical
level, infinities arising in its evaluation that needs to be taken care of and substracted.

The second puzzle is more conceptual but as important. It comes from the fact that
the formulation given here is in term of a background metric since it usually explicitely
refers to the spacetime slicing given by ρ. We will be interested in quantum gravity, and in
quantum gravity the metric is a dynamical object and cannot be fixed beforehand. Even
more, in quantum gravity the quantum spacetime is represented by the knowledge of the
wave function Ψ. The formulation of the correspondance should therefore be independent
of a choice of a background metric but then where is the asymptotic boundary?

Finally, and this is at first sight the most serious puzzle, the two objects in (12) do not
satisfy the same equations! One is a solution of Wheeler de Witt equation which is a second
order differential equation and the other a solution of a conformal Ward identity which is
a first order equation. How could one have equivalence between a second and first order
differential system?

Hopefully this three puzzles are related and can be resolved all together using the idea
of the so called “holographic renormalisation group” which is thus a key and central ingre-
dient for the precise formulation of the AdS/CFT correspondance. We review here some of
the results of the holographic renormalisation group but we hope to give a new and fresh
perspective on some of the results and on the resolutions of these puzzles that will allows us
to go further.

Lets us start to analyse first what type of equations Ψ and ZCFT are supposed to satisfy.
We will look from now on to the case of pure gravity.

B. Gravity equations

Lets us first analyse the gravity sector. In this case we are interested in the following
functional of a metric γ on a d dimensional space Σ. In the case this manifold is the
topological boundary of a d+1 dimensional manifold M , ∂M = Σ

ΨΣ(γ) =

∫

g|∂M=γ

Dg eiSM (g) (13)

This is indeed a formal expression and the whole problem of quantum gravity is to try to
make sense of it. One can hope that there is a precise definition of this object in string
theory or non perturbative gravity which make sense. In our case we will later work in 2+1
gravity where a non perturbative definition of Lorentzian quantum gravity and proposal for
this partition function exists. In higher dimension we can also think about this integral to
be defined at one loop in which case it is perfectly meaningfull, keeping in mind that we
expect any theory of quantum gravity should be in agreement with the one loop results.

In order to write down the Einstein action associated with a d + 1 dimensional manifold
M having a boundary Σ and lets introduce some notations. We denoted by gµν the metric
on M , nµ the unit vector normal to the boundary Σ. We have that n2 = −1 if Σ is spacelike
(dS case) and n2 = +1, if Σ is timelike (AdS case). In both case we denote ε = n2. We also
denote γµν = gµν − εnµnν the boundary metric on Σ and

Kµν = γρ
µ∇ρnν =

1

2
Lnγµν (14)



Asymptotic behavior of  WdW solution
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ρ→ 0

a solution of radial WdW equation then the asymptotic of 

4

The first puzzle is purely technical in nature and has been identified since the begining,
it comes from the fact that the evaluation of the (Ad)S-matrix is at conformal infinity ( it is
computed by taking a limit ρ→ 0 towards asymptotic infinity) there are, even at the classical
level, infinities arising in its evaluation that needs to be taken care of and substracted.

The second puzzle is more conceptual but as important. It comes from the fact that
the formulation given here is in term of a background metric since it usually explicitely
refers to the spacetime slicing given by ρ. We will be interested in quantum gravity, and in
quantum gravity the metric is a dynamical object and cannot be fixed beforehand. Even
more, in quantum gravity the quantum spacetime is represented by the knowledge of the
wave function Ψ. The formulation of the correspondance should therefore be independent
of a choice of a background metric but then where is the asymptotic boundary?

Finally, and this is at first sight the most serious puzzle, the two objects in (12) do not
satisfy the same equations! One is a solution of Wheeler de Witt equation which is a second
order differential equation and the other a solution of a conformal Ward identity which is
a first order equation. How could one have equivalence between a second and first order
differential system?

Hopefully this three puzzles are related and can be resolved all together using the idea
of the so called “holographic renormalisation group” which is thus a key and central ingre-
dient for the precise formulation of the AdS/CFT correspondance. We review here some of
the results of the holographic renormalisation group but we hope to give a new and fresh
perspective on some of the results and on the resolutions of these puzzles that will allows us
to go further.

Lets us start to analyse first what type of equations Ψ and ZCFT are supposed to satisfy.
We will look from now on to the case of pure gravity.

B. Gravity equations

Lets us first analyse the gravity sector. In this case we are interested in the following
functional of a metric γ on a d dimensional space Σ. In the case this manifold is the
topological boundary of a d+1 dimensional manifold M , ∂M = Σ

ΨΣ(γ) =

∫

g|∂M=γ

Dg eiSM (g) (13)

This is indeed a formal expression and the whole problem of quantum gravity is to try to
make sense of it. One can hope that there is a precise definition of this object in string
theory or non perturbative gravity which make sense. In our case we will later work in 2+1
gravity where a non perturbative definition of Lorentzian quantum gravity and proposal for
this partition function exists. In higher dimension we can also think about this integral to
be defined at one loop in which case it is perfectly meaningfull, keeping in mind that we
expect any theory of quantum gravity should be in agreement with the one loop results.

In order to write down the Einstein action associated with a d + 1 dimensional manifold
M having a boundary Σ and lets introduce some notations. We denoted by gµν the metric
on M , nµ the unit vector normal to the boundary Σ. We have that n2 = −1 if Σ is spacelike
(dS case) and n2 = +1, if Σ is timelike (AdS case). In both case we denote ε = n2. We also
denote γµν = gµν − εnµnν the boundary metric on Σ and

Kµν = γρ
µ∇ρnν =

1

2
Lnγµν (14)
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Z±(γ) are a pair of CFT’s:  Solutions of Ward identity 
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depends like Ψ on a d-dimensional metric γ. Such a CFT satisfies also two equations. The
first one express the invariance under diffeomorphism

∇aΠ̂
a
bZCFT (γ) = 0, (23)

and the second is the conformal ward identity

Π̂xZCFT (γ) =
1
√

γ

δ

δφ(x)
ZCFT (e2φγ)

∣∣∣∣
φ=0

= iAd(x)ZCFT (γ) (24)

where Ad(x) is the anomaly, it is zero in odd dimensions, wherehas in even dimension it can
be expand in terms of a basis of certain curvature invariants of dimension 2d which should
satisfy the Wess-Zumino consistency condition. In dimension 2 and 4 it is given by

A2(x) =
c

12π
R(x) (25)

A4(x) =
1

16π

(
aE(x)− cW 2(x) + α!R(x)

)
(26)

where c and a are the two central charges. W 2 is the square of the Weyl Tensor and E is
the Euler density. The term proportional to α is not an anomaly since it can be obtained
from the variation of a local action

∫ √
γR2.

W 2 = R2
abcd − 2R2

ab +
1

3
R2, (27)

E =

(
1

2
εef
abRefcd

)2

= R2
abcd − 4R2

ab + R2. (28)

One remark that when a = c the 4 dimensional conformal anomaly simplifies and contains
no square of the Riemann tensor. Interestingly this is exactly the anomaly that arise from
the semi-classical AdS/CFT correspondance [? ? ].

The conformal ward identity is only a first order equation which can be explicitely inte-
grated out. In two dimensions the integrated Ward identity is given by

ZCFT (e2φγ) = e
ic

12π SL(φ,γ)ZCFT (γ̂) (29)

where the liouville action is

SL(φ, γ) =

∫

Σ

√
γ (−φ!φ + φR(γ)) . (30)

In dimension 4 it is also possible to integrate out the anomaly. Quite remarkably, and this
fact seems to have been unnoticed in the litterature, in the gravitational case a = c the
integrated anomaly is also of the Liouville form7 (29)

SL(φ, γ) =

∫

Σ

√
γ

(
1

2
φ!4φ + φQ4(γ)

)
(31)

7 where the prefactor is now c
2π and one need to chose α = 4

Which is a left-over (holographic in-print) of the Wheeler de Witt equation 

Born-oppeiheimer expansion where     is the heavy component
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Asymptotic behavior of  WdW solution
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A general quantum gravity state correspond to a pair of CFT’s:not to one

The correspondance is NOT one to one: 
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What does that mean?

If one look at the extrinsic curvature
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Suppose that we have a background Lorentzian spacetime M, g of dimension d+1 solution
of Einstein equations with a cosmological constant λ

Rµν(g) = −ε
d

#2
gµν , Λ = −ε

d(d− 1)

2#2

with ε = −1 for dS and +1 for AdS. This manifold is conformally compact if there exists a
defining function ρ such that ρ−1(0) = ∂M and dρ "= 0 on ∂M and such that the conformally
equivalent metric

#2ḡ = ρ2g (3)

extend smoothly to the boundary of M . The Einstein equations imply that

ḡµν∂µρ∂νρ = ε (4)

on ∂M . The conformal infinity is therefore Lorentzian in AdS and Riemannian in dS. It
is always possible to chose a defining function ρ such that the relation (4) is valid in a
neighborhood of ∂M . For instance, when M is conformally compact we can take as a
defining function #ρ(x) = dḡ(∂M,x) the distance of x from ∂M with respect to ḡ. In this
coordinates the metric can be written

ds2 =
#2

ρ2
(εdρ2 + γρ), ds2 = (εdr2 + #2e

2r
! γr), ρ = exp

(
−r

#

)
(5)

where ρ−2γρ is the metric induced on the surfaces Σρ with ρ = cste and ρ = 0 define the
conformal infinity of M . The surfaces Σρ are spacelike in the dS case and timelike in AdS
case. In both cases ε = n2 is the square norm of the normal vector to Σρ. In the AdS case
r is the radial geodesic distance for the physical metric g.

The normal vector and extrinsic curvature of the surfaces Σρ are given by

n = ∂r = −ρ

#
∂ρ, Kν

µ = hνα∇αnµ =
1

2
hναLngαµ (6)

where hµν = gµν−εnµnν . This extrinsic curvature can be easily computed in our coordinates
and this gives

#Kj
i =

(
δj
i − ρ(γ−1∂ργ)j

i

)
= δj

i + O(ρ2). (7)

One can easily see that ∂ργ|ρ=0 = 0 thus the extrinsic curvature tensor is proportional to the
identity up to order ρ2 at infinity , this fact plays a key role in the AdS-CFT corrspondance
even at the quantum level. In order to see why lets consider wave function depending on
the metric γij on Σρ and lets consider a radial evolution1 of this wave function towards the
conformal infinity

∂rΨ(γρ) =

∫

Σρ

∂rγij
δΨ

δγij
∼ρ=0

2

#

∫

Σ0

γij
δΨ

δγij
. (8)

The last operation becomes just the operation of conformal rescaling thus thanks to the
presence of the cosmological constant a radial evolution in the bulk is equal near infinity to
a conformal transformation at the boundary. Clearly infinity is left invariant by the radial
evolution and therefore one expect conformal invariance of the physics described by ψ at

1 Of course this evolution is timelike in the dS case
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One of the two corresponds to reaching AS from the “inside” the other one 
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The first puzzle is purely technical in nature and has been identified since the begining,
it comes from the fact that the evaluation of the (Ad)S-matrix is at conformal infinity ( it is
computed by taking a limit ρ→ 0 towards asymptotic infinity) there are, even at the classical
level, infinities arising in its evaluation that needs to be taken care of and substracted.

The second puzzle is more conceptual but as important. It comes from the fact that
the formulation given here is in term of a background metric since it usually explicitely
refers to the spacetime slicing given by ρ. We will be interested in quantum gravity, and in
quantum gravity the metric is a dynamical object and cannot be fixed beforehand. Even
more, in quantum gravity the quantum spacetime is represented by the knowledge of the
wave function Ψ. The formulation of the correspondance should therefore be independent
of a choice of a background metric but then where is the asymptotic boundary?

Finally, and this is at first sight the most serious puzzle, the two objects in (12) do not
satisfy the same equations! One is a solution of Wheeler de Witt equation which is a second
order differential equation and the other a solution of a conformal Ward identity which is
a first order equation. How could one have equivalence between a second and first order
differential system?

Hopefully this three puzzles are related and can be resolved all together using the idea
of the so called “holographic renormalisation group” which is thus a key and central ingre-
dient for the precise formulation of the AdS/CFT correspondance. We review here some of
the results of the holographic renormalisation group but we hope to give a new and fresh
perspective on some of the results and on the resolutions of these puzzles that will allows us
to go further.

Lets us start to analyse first what type of equations Ψ and ZCFT are supposed to satisfy.
We will look from now on to the case of pure gravity.

B. Gravity equations

Lets us first analyse the gravity sector. In this case we are interested in the following
functional of a metric γ on a d dimensional space Σ. In the case this manifold is the
topological boundary of a d+1 dimensional manifold M , ∂M = Σ

ΨΣ(γ) =

∫

g|∂M=γ

Dg eiSM (g) (13)

This is indeed a formal expression and the whole problem of quantum gravity is to try to
make sense of it. One can hope that there is a precise definition of this object in string
theory or non perturbative gravity which make sense. In our case we will later work in 2+1
gravity where a non perturbative definition of Lorentzian quantum gravity and proposal for
this partition function exists. In higher dimension we can also think about this integral to
be defined at one loop in which case it is perfectly meaningfull, keeping in mind that we
expect any theory of quantum gravity should be in agreement with the one loop results.

In order to write down the Einstein action associated with a d + 1 dimensional manifold
M having a boundary Σ and lets introduce some notations. We denoted by gµν the metric
on M , nµ the unit vector normal to the boundary Σ. We have that n2 = −1 if Σ is spacelike
(dS case) and n2 = +1, if Σ is timelike (AdS case). In both case we denote ε = n2. We also
denote γµν = gµν − εnµnν the boundary metric on Σ and

Kµν = γρ
µ∇ρnν =

1

2
Lnγµν (14)

3 equations: The CFT Ward identity is the in-print of WdW at 
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1st versus 2nd order: 1 gravity solution generically               
                                    corresponds to 2 CFT’s



Asymptotic behavior of  WdW solution
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What does it mean then to identify THE CFT dual to gravity

Where H is the handlebody associated to 

e-g SYM in d =4+1 or Witten Proposal in d=2+1

What is meant is to identify THE CFT corresponding to a particular gravity 
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We can recursively solve these equation, the procedure is straightforward but increasingly
tedious. It is however tremendously simpler than the original way of computing the coun-
terterm action. Using the results for S1 we can compute the extrinsic curvature at first order
and putting it back in (45) compute S2, denoting K(n)

b
a ≡ K̂b

a(Sn) one obtains

K(1)
b
a = − !

(d− 2)

(
Rb

a −
R

2(d− 1)
δb
a

)
≡ −!P b

a (46)

S2 =
!3

2(d− 4)

∫

Σ

√
γ

(
P b

aP a
b − PP

)
(47)

8 The variation of S2 can be naturally split into two contributions, one is purely algebraic and
obtained by varying the metric contracting the tensor Pab. It is quadratic in the curvature
tensor and do not contain any derivatives. We denote this contribution by K(2,0) where 2
refers to the number of curvature tensor and 0 to the number of derivatives.

Πab
(2,0) =

!3

(d− 4)

(
2(P ◦ P )ab − γab

2
(P ◦ P )

)
(48)

Kab
(2,0) =

!3

(d− 4)

(
2(P ◦ P )ab − 3γab

2(d− 1)
(P ◦ P )

)
(49)

where the notation we use was introduced in (??). In order to go further we need to introduce
the differential operator ∇cd

ab which appear when varying the Ricci tensor δRab = ∇cd
abδγcd;

explicitly it is
∇cd

ab = −!δ(c
a δb)

d + 2∇(c∇(aδ
d)
b) − γcd∇(a∇b) (50)

as usual the parenthesis denote symmetrisation.
The contribution to K2 from this variation is given by

Πcd
(1,1) =

!3

(d− 4)

(
2∇†cd

abΠ
ab
(1)

)
(51)

where ∇† denote the hermitic conjugate operator and we have use the fact that δKn ◦Km =
δKnΠm. The invariance by diffeomorphism implies that the tensors Π(n) are transverse, this
allows to simplify greatly the action of ∇ on it. We can now compute the action at the next
order it consists of two part S3 = S(3,0) + S(2,1) where the first grading counts the number of
curvature and the second half the number of covariant derivative inserted.(subtlety here to
explain since [∇,∇] = R , we mean a prescribed ordering)

S(3,0) =
!

2(d− 6)

∫

Σ

K(2,0) ◦K1 =
!5

2(d− 6)(d− 4)

∫

Σ

(P, P, P ) (52)

S(2,1) ∼
∫

Σ

K(1,1) ◦K1 =

∫

Σ

Π(1,1)K1 ∼
∫

Σ

∇†Π1K1 =

∫

Σ

Π1∇K1 (53)

putting together the proportionality coefficient one has

S(2,1) =
!5

(d− 6)(d− 4)

∫

Σ

Π1∇K1

8 in terms of the Ricci tensor we have L2 = Rb
aRa

b − d
4(d−1)R

2

11

The corresponding Hamilton Jacobi equation reads

1

(d− 1)2
(K̂(S̃) ◦ K̂(S̃)) + R(γ) +

d(d− 1)

l2
= 0 (37)

We look for an expansion of S(γ) in terms of functional over the metric having fixed con-
formal dimension, that is

S̃(γ) =
∞∑

n=0

Sn(γ), with Sn

(
ρ−2γ

)
= ρ−d+2nSn(γ). (38)

This expansion can therefore be thought as a taylor expansion in the parameter ρ. Lets
start to solve the equation at order 0. From

K̂b
a

(∫
√

γ

)
=

1

(1− d)
δb
a, (δ ◦ δ) = d(1− d), (δ ◦K) = (1− d)K (39)

one easily sees that

S0(γ) = ±(d− 1)

$

∫

Σ

√
γ (40)

is the solution at order 0. In order to match the classical expansion we choose the sign +
that match the classical analysis that is $K̂b

a(Ψ) = δb
aΨ. The other sector can be obtained

by changing the sign of $. We can now use this solution to start a local expansion of the
Hamilton-Jacobi equation,

S̃ = S0(γ) + S

where Ŝ starts at order one. The equation now reads

1

$
δ̂D
x S(γ) =

(
K̂x(S) ◦ K̂x(S)

)
(γ) + R(γ(x)) (41)

Where we have introduced the operator δ̂D
x that generates local conformal rescaling namely

2
√

γ
gab δ

δgab(x)
≡ δ̂D

φ F (γ) =
1
√

γ

δF (e2φγ)

δφ(x)

∣∣∣∣
φ=0

(42)

If one integrate this operator over Σ one obtain the conformal dimension operator, which
can in turn be written as a differential operator −ρ∂ρ. Using this we can now get quite
remarkably a closed equation for S which is the result we were looking for

∂rS(e
2r
! γ) =

∫

Σ

√
γ(x)

(
K̂x(S) ◦ K̂x(S)

)
(e

2r
! γ) + e(d−2) 2r

! R(γ(x)). (43)

We can write this equation in terms of the expansion coefficients

S1(γ) =
$

2(d− 2)

∫

Σ

√
γR(γ) (44)

2(d− 2n)Sn(γ) = $
n−1∑

m=1

∫

Σ

√
γ

(
K̂x(Sm) ◦ K̂x(Sn−m)

)
(γ) (45)

11

The corresponding Hamilton Jacobi equation reads

1

(d− 1)2
(K̂(S̃) ◦ K̂(S̃)) + R(γ) +

d(d− 1)

l2
= 0 (37)

We look for an expansion of S(γ) in terms of functional over the metric having fixed con-
formal dimension, that is

S̃(γ) =
∞∑

n=0

Sn(γ), with Sn

(
ρ−2γ

)
= ρ−d+2nSn(γ). (38)

This expansion can therefore be thought as a taylor expansion in the parameter ρ. Lets
start to solve the equation at order 0. From

K̂b
a

(∫
√

γ

)
=

1

(1− d)
δb
a, (δ ◦ δ) = d(1− d), (δ ◦K) = (1− d)K (39)

one easily sees that

S0(γ) = ±(d− 1)

$

∫

Σ

√
γ (40)

is the solution at order 0. In order to match the classical expansion we choose the sign +
that match the classical analysis that is $K̂b

a(Ψ) = δb
aΨ. The other sector can be obtained

by changing the sign of $. We can now use this solution to start a local expansion of the
Hamilton-Jacobi equation,

S̃ = S0(γ) + S
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We can recursively solve these equation, the procedure is straightforward but increasingly
tedious. It is however tremendously simpler than the original way of computing the coun-
terterm action. Using the results for S1 we can compute the extrinsic curvature at first order
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refers to the number of curvature tensor and 0 to the number of derivatives.
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where ∇† denote the hermitic conjugate operator and we have use the fact that δKn ◦Km =
δKnΠm. The invariance by diffeomorphism implies that the tensors Π(n) are transverse, this
allows to simplify greatly the action of ∇ on it. We can now compute the action at the next
order it consists of two part S3 = S(3,0) + S(2,1) where the first grading counts the number of
curvature and the second half the number of covariant derivative inserted.(subtlety here to
explain since [∇,∇] = R , we mean a prescribed ordering)
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relevant in the limit ρ → 0; in dimension d = 3, 4 the first two terms contribute; in dim
5, 6 the first three etc... One also notice that in even dimension, the integrated anomaly is
exactly given by the residue of the pole that arises for d = 2n in the local expansion of S(d).

The inclusion of loop corrections renormalises the coefficients appearing in this local
expansion. This renormalisation can be explicitly computed at one loop and we will see
later that in d = 2 it leads to a finite renormalisation of the central charge. Since only a
finite number of terms are relevant in order to get the dominant asymptotic, it seems that
the non renormalisability of gravity is not registered by the asymptotic expansion (42), this
is clearly something that deserves further study and a deeper understanding.

To see why a solution of the radial WdW equation has the asymptotic behavior (42)
one first perform the change of variable γab → ρ−2γab; Π̂a

b → ρ−d 2√
γ
γac δ

δγcb
≡ ρ−dΠ̂a

b in the

hamiltonian constraints. Thus Ψ(ρ−2γ) ≡ Ψρ(γ) is a solution of HρΨρ(γ) = 0 with

Hρ = −εκ2ρ2d Π̂ · Π̂ + ε
d(d − 1)

l2
+ ρ2R(γ) (46)

where we have denoted Π̂ · Π̂ ≡ Π̂b
aΠ̂

a
b − Π̂2

d−1 . We now look here only at the radial equation
for AdS (ε =+1). The dS case is similar.

One sees that in the limit ρ → 0 the curvature term becomes irrelevant. and the solution
of the resulting equation, where it is neglected, is easily found There are two such solutions
given by

Ψ(0)
ρ (γ) = exp

(

± i

κρd

d − 1

%

∫

Σ

√
γ

)

a linear combination of which represents the dominant term in the asymptotic expansion of
Ψρ. They satisfies

κ2ρ2d Π̂ · Π̂Ψ(0)
ρ (γ) =

d(d − 1)

l2
Ψ(0)

ρ (γ).

We can now expand around the state associated with the sign + (the expansion around
the other state is similar) : Ψ = Ψ(0)Ψ(1). This expansion is easily carried out if one use

the fact that ρdΠ̂a
bΨ = Ψ(0)

(

id−1
κ%

δa
b + ρdΠ̂a

b

)

Ψ(1). By construction the argument of Ψ(1)

is subdominant (O(ρ2))compare to the one of Ψ(0), thus (Ψ(1))−1
(

ρdΠ̂a
bΨ

(1)
)

is of order at

least ρ2. In this expansion the hamiltonian constraint becomes

i
2κ

%
ρdΠ̂Ψ(1) + ρ2R(γ)Ψ(1) − κ2ρ2d Π̂ ◦ Π̂Ψ(1) = 0. (47)

In the case d = 2 and in the limit ρ → 0 the last term of the identity is negligible since
Π̂a

bΨ
(1) is O(1) and the equation reduces, as promised, to the Ward identity

Π̂Ψ(1) = i
%

2κ
R(γ)Ψ(1) = i

c

24π
R(γ)Ψ(1), with c =

3%

2G
. (48)

To go to the next order, we continue the expansion Ψ = Ψ(0)Ψ(1)Ψ(2) with

Ψ(1) = e−i !
2κ(d−2)

R

Σ
√

γR(γ)
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5, 6 the first three etc... One also notice that in even dimension, the integrated anomaly is
exactly given by the residue of the pole that arises for d = 2n in the local expansion of S(d).
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expansion. This renormalisation can be explicitly computed at one loop and we will see
later that in d = 2 it leads to a finite renormalisation of the central charge. Since only a
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In the case d = 2 and in the limit ρ → 0 the last term of the identity is negligible since
Π̂a

bΨ
(1) is O(1) and the equation reduces, as promised, to the Ward identity
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To go to the next order, we continue the expansion Ψ = Ψ(0)Ψ(1)Ψ(2) with
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One can rescale the WdW constraint
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5, 6 the first three etc... One also notice that in even dimension, the integrated anomaly is
exactly given by the residue of the pole that arises for d = 2n in the local expansion of S(d).

The inclusion of loop corrections renormalises the coefficients appearing in this local
expansion. This renormalisation can be explicitly computed at one loop and we will see
later that in d = 2 it leads to a finite renormalisation of the central charge. Since only a
finite number of terms are relevant in order to get the dominant asymptotic, it seems that
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5, 6 the first three etc... One also notice that in even dimension, the integrated anomaly is
exactly given by the residue of the pole that arises for d = 2n in the local expansion of S(d).

The inclusion of loop corrections renormalises the coefficients appearing in this local
expansion. This renormalisation can be explicitly computed at one loop and we will see
later that in d = 2 it leads to a finite renormalisation of the central charge. Since only a
finite number of terms are relevant in order to get the dominant asymptotic, it seems that
the non renormalisability of gravity is not registered by the asymptotic expansion (42), this
is clearly something that deserves further study and a deeper understanding.
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exactly given by the residue of the pole that arises for d = 2n in the local expansion of S(d).
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VI. RECONSTRUCTING KERNEL

We now present the reconstruction formula for the wave functional in terms of the bound-
ary CFT in the case of three dimensional gravity.

We denote by e± and E± two 2-dimensional frame fields.
The main claim of this paper is that If Zc(E) is a solution of the Ward identity then the

wave functional Ψ(e) defined below is a solution of the three dimensional Wheeler de Witt
equation.

Ψ
(
e±

)
= exp

(
ik

2π

∫

Σ

e

) ∫
DE exp

(
−ik

π

∫

Σ

(E+ − e+) ∧ (E− − e−)

)
Zc(E) (87)

where the relationship between k and c is

c = 1 + 6
(√

k +
√

k−1
)2

(88)

The functional measure is given in term of the reparametrisation and lorentz gauge in-
variant distance on the space of frame

(δE, δE) =

∫
E(Eµ

a Eν
b − Eµ

b Eν
a )δEa

µδEb
ν =

∫
δE+ ∧ δE− (89)

Before giving a proof of this statement Under a rescaling of the metric e→ e/ρ we have

Ψ

(
e

ρ

)
= exp

(
ik

2πρ2

∫

Σ

e

) ∫
D

(
E

ρ

)
exp

(
− ik

πρ2

∫

Σ

(E+ − e+) ∧ (E− − e−)

)
Z(ρ−1E)

We can use the the conformal anomaly equation to extract the ρ dependence in Z(E) hence

Ψ

(
e±

ρ

)
= exp

(
ik

2πρ2

∫

Σ

e

)
ρ

ic
24π

R
Σ eR

∫
D

(
E

ρ

)
exp

(
− ik

πρ2

∫

Σ

(E+ − e+) ∧ (E− − e−)

)
Zc(E)

In the limit ρ→ 0 the term in the integrand become a delta functional imposing E = e. It
is convenient to make the change of variable E → e + ρE hence we obtain

Ψ

(
e±

ρ

)
= exp

(
ik

2πρ2

∫

Σ

e

)
ρ

ic
24π

R
Σ eR

∫
DE exp

(
−ik

π

∫

Σ

E+ ∧ E−
)

Zc(e + ρE)

thus in the limit we get

Ψ

(
e±

ρ

)
∼ N exp

(
ik

2πρ2

∫

Σ

e + ln ρ
ic

24π

∫

Σ

eR

)
Zc(e) (90)

which agree with the holographic renormalisation in the semi-classical limit c ∼ 6k. Here
N =

∫
DE exp

(
− ik

π

∫
Σ E+ ∧ E−

)
.

After
Another intriging limit is to consider the opposite limit limρ→0 ψ(ρe) which amounts to

look at the value of ψ for the singular metric e = 0. In this case it is convenient to introduce
the parametrisation

e+ = eϕ+α(du + µdũ), e− = eϕ−α(du + µ̃dũ)
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After
Another intriging limit is to consider the opposite limit limρ→0 ψ(ρe) which amounts to

look at the value of ψ for the singular metric e = 0. In this case it is convenient to introduce
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e+ = eϕ+α(du + µdũ), e− = eϕ−α(du + µ̃dũ)

with central charge c
We can construct a solution of WdW equation with asymptotic 
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Very long proof...

Amazingly simple formula!
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Conclusion

The gravity AdS matrix satisfies the radial WdW equation
The asymptotic value of any solution is control by a pair of CFT
Restricting to one CFT is equivalent to looking at spacetime with AS 
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We can give in 2+1 an explicit reconstruction formula of a radial state 
from any boundary CFT 

The correspondence is one to many that is 
 between radials states of gravity and boundary CFTs

We have proposed a particular radial state to study in order to
 identify the CFT dual to gravity
many open questions:
 Lorentzian vs  Euclidean? Relationship between radial states and 
usual states or more density matrix of QG.
dSitter vs AdS, meaning of the boundary imaginary CFT....


