Home Problems: Set I

- 1. CN 1.1 (Course notes)
- 2. (a) Show that if X^i_{jk} and Y^i_{jk} are (1,2) tensors the there sum is also a (1,2)
 - (b) Show that if $X_{ij} = X_{ji}$ holds in one coordinate system it holds in all coordinate systems.

 - (c) Show that $(Z_{ijk} + Z_{jki} + Z_{kij})X^iX^jX^k = 3Z_{ijk}X^iX^jX^k$. (d) Let $S_{ij} = S_{ji}$ be a symmetric (0,2) tensor and $A^{ij} = -A^{ji}$ a antisymmetric (2,0) tensor. Show that $S_{ij}A^{ij}=0$.
- 3. Assume that δ_i^i is a (1,1) tensor that in a particular coordinate system x^i has components $\delta^i_j = \left\{ \begin{array}{ll} 1 & i=j \\ 0 & i \neq j \end{array} \right.$ Show that δ^i_j is the same in all coordinate systems, i.e it is a numerical tensor.
- 4. (a) An object with an index need not always be a tensor. Let x^i be some curvilinear coordinate system on \mathbb{R}^N . Is the object x^i a (1,0) tensor? Argue for why it is or why it is not.
 - (b) An object without an index is not necessarily a scalar, i.e a (0,0) tensor. Show that the determinant of the metric det(g) is not a scalar by deriving the transformation law of det(g) under general coordinate transformations.