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Summary

Foundational studies in quantum theory have consisted in large part of attempts to avoid para-

doxical situations in describing properties of a physical system. Quantum logic addresses some of

the perplexing problems that plague interpretations of quantum theory by invoking a non-classical

propositional calculus for the set of propositions of a quantum system.

Historically, quantum logic derives from von Neumann’s observation that the set of projection

operators on a Hilbert space constitute a ‘logic’ of experimental propositions. More than two decades

passed from the pioneering work of Birkhoff and von Neumann before interest in quantum logic was

re-ignited by Mackey’s probabilistic analysis of quantum theory. Piron’s axiomatization provided a

significant extension of Mackey’s formulation, leading to further developments focused primarily on

establishing concrete operational foundations to quantum logic, most notably, the empirical framework

introduced by Foulis and Randall in the 1980s. Recent advances in the past two decades feature the

employment of powerful techniques from pure mathematics, in particular, various algebraic notions

taken from category theory and computational logic.

Aside from establishing the formal structures characterizing the syntax of quantum logic, there have

also been concerted efforts to attribute realist or empiricist readings to the semantic content embodied

in the projection lattice of Hilbert space. Some prominent quantum-logical interpretations, at least

those critically evaluated in this essay, include Reichenbach’s trivalent logic, Putnam’s realist quantum

logic, and Finkelstein’s operational quantum logic.
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Figure 1: Stern-Gerlach apparatus
showing the splitting of a silver beam
by the inhomogeneous magnetic field.
Whether a particular silver atom is
deflected up or down is determined by
the spin of its unpaired electron. It
is conventional to refer to the up and
down portions as +1 and -1 outcomes,
respectively. [Image courtesy of D.
Harrison: UPSCALE, Department of
Physics, University of Toronto.]

1 The issue with quantum mechanics

It should not be difficult to see why quantum mechanics is conceptually puzzling. The theory in-

corporates a computational method for assigning probabilities to events or propositions or values of

physical magnitudes—the dynamical variables or ‘observables’ of the theory, formulated in terms of the

geometry of Hilbert space. However, this particular algorithm has, over the years, resisted numerous

attempts to associate the probabilities generated by the statistical quantum states with measures over

the so-called ‘property states’—that is, major problems arise when definite values are attributed to all

relevant physical observables or to ‘lists’ of properties of the system, or when truth values are assigned

to all possible propositions about the system [1].

To gain more insight into what the problem is, consider the mathematical framework of classical

physics. In rather general terms, the algebra of physical observables of a classical system is a commu-

tative algebra of real-valued functions defined on the position-momentum phase space of the system. It

contains a sub-algebra of idempotent magnitudes (which correspond to projectors for classical dynam-

ical variables) which is a Boolean algebra, isomorphic to the Boolean algebra of Borel subsets of phase

space.1 In this case, the property state of the classical system is represented by a point in phase space

(an atom in the corresponding Boolean algebra) or by collections of sets to which the point belongs

to (an equivalence class of propositions about the system) and the evolution of the system is usually

described using Hamiltonian mechanics. It is also possible to define a statistical state for such a system,

represented by a probability measure (in the usual Kolmogorov sense) over regions of phase space and

where the time evolution of the state is captured by Liouville dynamics.

In direct comparison, a fundamental issue of interpretation is encountered in quantum mechanics:

the theory apparently provides us with a set of states which are statistical states, expressed in terms of

vectors or statistical operators in Hilbert space, without specifying any property states for the system.

Moreover, there are excellent grounds (theorems by Bell, Kochen and Specker [2], for instance) for

supposing that there are no such property states for quantum systems. The natural question to ask

then is, what do these statistical states mean if there are no property states?

The following example [3] provides a concrete illustration of this peculiar problem: Think of a beam

of silver atoms emitted by a source used in a Stern-Gerlach apparatus, like the one depicted in fig. (1).

After the atoms pass through the inhomogeneous magnetic field (along the z-direction), the beam is

split vertically and only two outcomes for σZ are found, corresponding to +1 or -1. If the apparatus

had been horizontal (the counterfactual situation associated with σX), still only two outcomes are

1Roughly speaking, a Borel set is any set that can be formed from elementary sets and then taking countable unions and
intersections of these sets. For example, the set of natural numbers N is a Borel set, since one can take each natural number
as a set and the union of them is denumerable.
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Figure 2: Experimental arrangement of
a two-slit experiment with electrons. Two
paths are made available to a weak electron
beam via the electron biprism, a interfer-
ometric device composed of parallel plates
with a fine central filament, the filament
having a positive electrostatic potential rel-
ative to the plates. [Image courtesy of A.
Tonomura, et al.: American Journal of
Physics 57 (1989) 117-120.]

anticipated. For atoms that yielded outcome +1, it is true that

σZ = +1, and σX = +1 or σX = −1.

It is, however, never the case that

σZ = +1, and σX = +1.

It is also false to say that

σZ = +1, and σX = −1.

The last two statements are ‘absurd’ because they attribute simultaneous values to complementary

observables, something which Bohr asserted to be meaningless to even talk about. However, the first

claim is acceptable because only one of the non-commuting variables is given a fixed value.

Nonetheless, it is perfectly legitimate to say something about σX and σZ at the same time when

referring to statistical ensembles of identically prepared systems. This is because, in practice, the

selection and extraction of a sample from the ensemble remains a useful approximation to an idealized

preparation process.

A similar situation happens when considering an electron two-slit experiment [4], shown in fig. (2).

In analogy to the version of the double slit using photons, the electron paths are called ‘slits’. Let X

be any region on the detecting screen. Define the probabilities

p1 = P (X| only slit 1 is open ), (1)

p2 = P (X| only slit 2 is open ), and

p12 = P (X| both slits are open ).

Suppose there is another variable Y that takes values 1 or 2 depending on whether an electron passes

through slit 1 or 2. Then it must be that

p1 = P (X|Y = 1), (2)

p2 = P (X|Y = 2), and

p12 = P (X|Y = 1 or Y = 2),

which according to classical rules of conditional probabilities imply that p12 is some convex combi-

nation of p1 and p2, i.e., p12 ∈ (p1, p2). The electron interference pattern seen in these experiments

demonstrably violates this result. Note that although this second example talks about measurement

statistics, the incorrect conclusion follows from ascribing definite, determinate values to incompatible

properties of individual electrons. The usual thing to say is that it is not meaningful to talk about
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which slit an electron went through if no attempt was made to observe it.

Quantum theory seems to leave us in an unsatisfying position of having to completely disregard

statements about any unmeasured physical quantity whenever an observable incompatible to it has been

measured—an unsavory, paradoxical consequence of Heisenberg’s principle of indeterminacy. So this is

the case for studying quantum logic: there are certain statements which are certified false by Boolean

logic and meaningless according to the widely accepted version of quantum mechanics. Quantum logic

stems from a desire to make such statements to be both meaningful and true [3].

One of the primary aims of quantum logic as a foundational program is to understand the meaning

behind the formal structure of quantum theory by regarding it as a type of non-classical propositional

calculus. [5] The motivation behind it can be described succinctly as follows: perhaps what is at fault

in the present understanding of quantum mechanics is the insistence of a classical logical structure for

describing properties or dynamical quantities of a system.

A possible solution to this prevailing dilemma would then involve the use of extended or generalized

logics, which will take explicit account of situations involving incompatible observables. A skeptic of

such a ‘quantum logic program’ might think this is nothing more than a needless obfuscation of well-

known ideas but it should be noted that “difficulties like those with virtual processes or divergences

in quantum field theory might be rooted in applying a formalism appropriate to measurable quantities

and extending them to unmeasurable ones [6].”

2 Logic, philosophy, and interpretation

To fully appreciate what proponents of quantum logic are trying to achieve, it is first necessary to

give a general overview of some important notions pertaining to logic and interpretations of physical

theories.

2.1 Logic

Logic is a mathematical model for deductive thought. It is a model in much the same way as probability

theory is a model for situations involving chance and uncertainty. A logical system is defined by a formal

structure for constructing sentences, called syntax, and for attributing meaning to these sentences,

termed semantics [7]. More intuitively, logic deals with propositions and relations and operations on

those propositions, where the field of propositions that apply depends on the context being studied. Of

course, this context must always be clearly specified from the start, in order to determine what valid,

meaningful statements are admitted by the logical system.

As a mathematical model, logic is more abstract than any correspondence to real-life objects.

Consider the following logically correct deduction:

“All men are mortal.

Socrates is a man.

Therefore, Socrates is mortal.”

The validity of the third sentence (the conclusion) from the first two (the assumptions) does not

depend on any special idiosyncrasies of Socrates. The deductive reasoning is justified by the form of

the sentences rather than any actual fact about men and mortality. In fact, the meaning of the word

“mortal” is unimportant here; however, it does matter what “all” means. The power of logic lies in the

ability of making such inferences. Because the validity of logical deductions is determined by the form

rather than the content, it is possible to analyze the syntax of sentences independent of the semantic

meaning.
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Formally, logical inference describes the relation between two propositions, an antecedent a and a

consequence b, wherein a → b means that “if a is true then b follows”. An even stronger statement

would be the logical equivalence of propositions a = b, which is defined to be the pair of inferences

a → b and b → a. Inferences are governed by the axiomatic rules of the logical system, commonly

referred to as the propositional calculus of the logic. Roughly speaking, the propositional calculus

dictates how compound sentences and implications can be constructed from the starting axioms of the

logic.

For propositional logic, the syntax sets the rules for building compound propositions out of elemen-

tary ones using operations called logical connectives:

Symbol Logical operation Also referred to as

¬ NOT negation

∧ AND conjunction or ‘meet’

∨ OR disjunction or ‘join’

→ IF-THEN subjunction or implication

↔ IFF equality

In classical Boolean logic, a simple way to give meaning to propositions and sentences is through the

set-theoretic approach. Here the field of propositions is considered as a set S and every proposition is

associated with a subset R of S. Thus, one gets a one-to-one correspondence between logical and set-

theoretic operations: union and intersection of sets for the join and meet, respectively, and complements

for negation of propositions. There is also a natural representation for the universal or ‘evidently true’

proposition 1 by the set S itself and the empty or ‘patently absurd’ proposition 0 by the null set ∅.
More details about Boolean logic will be discussed in the section on the logic of classical mechanics.

2.2 Realism and empiricism

Scientists work under the impression that their field of study is more than just the mere accumulation

of facts and observational data. A good scientist believes that a crucial aspect of his profession involves

explaining why nature behaves the way that it does. As van Fraasen notes, “science does not merely

represent phenomena but also interprets them” [8]. But what does it exactly mean to say that one

“interprets” science?

For scientists, scientific interpretation is fundamentally concerned with understanding the concep-

tual framework or mathematical formalism that underlie natural processes. In order to clarify what is

meant by ‘understanding’, it is first necessary to talk about what the aim of science is.

The scientific enterprise is a productive activity, one whose merits are measured in terms of the

successes of its theories. The success of a scientific theory depends on its correspondence with natural

phenomena in such a way that one is able to judge if the degree of correspondence is acceptable or

believable. More generally, a theory is an object for the sort of attitudes that are widely accepted by the

scientific community, expressed in assertions of knowledge and reasonable opinions. These knowledge

and opinions are meant to tell us about what the world is like in a way that is not only logical but also

predictive.

The reason for believing in a correspondence between a physical theory and the world around us

falls under two broad philosophical views on the purpose of science. The first one is called realism.

In contemporary philosophy, realism is the belief in the existence of certain objects independent of

our thoughts, beliefs, or conceptions about them. A realist will typically profess to three fundamental

beliefs [9]:
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(a) Reality consists of everything that does exist. (This is meant to distinguish ontological or physical

existence from Platonic realism.)

(b) Reality is independent of any act of observation.

(c) Some of the features of reality are accessible to our knowledge.

The last point is particularly important if we wish to avoid merely discussing pure metaphysics. In the

realist perspective, a physical theory is then regarded as a theory of observable magnitudes, that is, as

a theory which describes nature as nature reveals itself when it is probed by means of measurement

[10]. It is assumed that nature exists independent of the process of observation but physical theory only

requires some pertinent features of the world to be accessible under suitable conditions for observing

them. Furthermore, a realist believes that the behavior of the unknown (that is, the unobserved or

perhaps unobservable elements of nature) can be logically inferred from its (indirect) interaction with

the known.

An objective approach to a physical theory must have in it, as an essential ingredient, the appro-

priate conditions for measurement, that is, the possible ways of observing a system must be defined in

terms of primitive concepts in the theory, such as logic, causality, and space-time. These notions, which

Bohm called ‘explicit structures’ of the part of nature being studied, together with a material basis

for measurement processes that define physical quantities, determine the physical reality. In addition,

a realistic theory is required to be complete in the sense of Einstein–that every element of physical

reality correspond to an element of the theory. A final postulate concerns the internal consistency of a

physical theory wherein the measuring process that underlies the foundations of the theory (since the

theory is derived or deduced from such measurements) must be considered as physical processes that

are contained within and subject to the complete theory itself. It might be worth mentioning here that

any physical theory presupposes the validity of mathematical disciplines like logic, geometry, analysis,

and algebra. These disciplines correlate well with experience. However, it must be maintained that

logic, algebra, analysis and geometry do not have a priori validity for physics—hence, Wigner’s [12]

remarks about the “unreasonable effectiveness of mathematics” in describing natural phenomena.

As much as most scientists seek to describe reality by deducing its features from what is observed,

there is, however, an alternative philosophy called empiricism. Empiricism in its most general form

encompasses the belief that information about the world is acquired primarily through observation and

experience. In its broadest sense, empiricism includes various schools of thought about what constitutes

empirical reasoning, from instrumentalism and operationalism to logical positivism and constructive

empiricism. The last one in particular emphasizes those aspects of knowledge that pertain to scientific

evidence and offers a strong and modern contrary stance to realism and so let us say a few words about

it.

Constructive empiricism states that scientific theories have literal meaning, that they aim to be

empirically adequate, and that their acceptance involves, as belief, only that they are empirically

adequate [8]. A physical theory is empirically adequate if and only if everything that it says about

observable entities is true. It also means that nothing needs to be said about phenomena that isn’t

observed, and the same for unobservable quantities. A theory is regarded to have literal meaning

or semantically literal if the concepts of the theory are expressed in such a way that it claims are

necessarily true or false (as opposed to say an instrumentalist interpretation that a theory only needs

to be able to explain and make accurate predictions). Constructive empiricism shares with realism the

literal interpretation of a theory but differs from it in not ascribing any truth to unobservables.
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2.3 Interpreting scientific theories

Most, if not all, interpretations of scientific theories can be classified as realist or empiricist. Despite

major differences in content, the interpretation of scientific phenomena relies heavily on logic. The

meaning attributed to propositions in that logic will depend on whether the interpretation gives a realist

or empiricist reading, but in either case, inferences and deductions about how natural phenomena work

will have to respect a formal logical structure, one which is intuitively simple in classical systems (since

it is just a Boolean algebra) but more complicated in quantum systems (often termed the ‘lattice of

closed linear subspaces of Hilbert space’, which will be described in detail in later sections).

It must now be said that even after one chooses to be a realist or empiricist, there are still a good

number of ways to interpret the theory that will tally with its mathematical content. There must

be some criteria one can use that will make one interpretation more attractive than another. As a

start, scientists commonly adhere to what is called “Ockham’s razor”, which usually just means that

between any two theories that explain the same phenomenon correctly, the simpler model is more

preferable. It is a somewhat pragmatic criterion motivated by a straightforward logical reasoning: the

more sophisticated objects a theory incorporates, the less likely each and everyone of them is actually

realized, and so the less probable for that particular theory to be true. Of course, there are those

people who argue that maybe the world really works in a complicated fashion and it is actually wrong

to insist that it be simple; but throughout the years science has managed to come up with relatively

simple yet effective models for describing chemical, biological, and physical processes of all kinds, and

it seems more prudent to remain on that course.

According to Reichenbach [11], the world has a definite causal order although it is inherently

unpredictable (due to quantum indeterminism). Therefore, he says a scientific theory should be judged

according to its ability to provide a causal model for every correlation. Although not all correlations

result from cause-effect links2, the theory should still be able to suggest that most correlations are

derived from a common cause (that is, it should not allow for too many pure coincidences). The point

is that the more correlations a theory explains, the better the theory is. It seems to be a very reasonable

criterion for an acceptable physical model of nature. Any scientific interpretation is expected to be

able to explain strong correlations between physical quantities in terms of a direct causal connection.

Physicists in particular like to think of interpretation as being synonymous with physical under-

standing, which, roughly speaking, has to do with the ‘visualizability’ of concepts in the theory. A

visualizable concept is one that admits a mental picture, often in terms of idealized objects with imag-

inable, concrete properties. Several examples worth citing are:

(a) In Newtonian mechanics, objects are thought of a point-like, rigid particles that experience forces,

setting them into motion with trajectories that trace out a curve for any given time interval.

(b) In electromagnetic theory, a magnetic fields can be visualized as a set of field lines that are

directed from the north to the south pole and whose densities in a particular region determine

the flux strength there.

(c) In quantum information, the state of a qubit can be represented in terms of a point in the Bloch

sphere or ball, where points on the surface correspond to pure states and points inside correspond

to mixtures.

(d) In general relativity, space-time is imagined to be analogous to a rubber sheet that changes it

shape in the presence of matter and energy, and whose shape or curvature determines the motion

of the objects that move in it.

2As a comical example, consider the possible implications of a statistically significant inverse correlation between the
number of pirates worldwide and the average global temperatures: fewer pirates, higher global temperatures ⇒ pirates are
cool. It would be true only if the correlation is causal in nature.
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From the above examples, it is possible to characterize some features of visualizability. One way is to

check if the system can be described in terms of idealized particles or waves. Something more general

would need analogies of abstract ideas with more familiar objects such as rubber sheets or elastic

springs. There also those concepts which find simple geometric counterparts—the sort of intuition

advocated and popularized by Albert Einstein. In fact, modern advanced theoretical concepts are

considered ‘intuitive’ if they can be depicted geometrically. It is essential that the fundamental notions

of any interpretation involve visualizable concepts because there is no true understanding when a theory

is mired in a web of rigorous yet incomprehensible formalities.

3 The logic of classical physics

To understand the differences in the conceptual structure between classical and quantum mechanics,

it is instructive to first examine the notions of state of a system and observable quantities as they are

studied in classical physics. Not only are classical realm more familiar and more intuitive, it will also be

helpful to see how the quantum mechanical notions of states and observables depart from our classical

expectations [13].

3.1 Classical states and observables

In the Hamilton-Jacobi formulation of classical analytical dynamics, a classical system consists of a set

of particles whose individual motion has a rather simple geometric description. The physical properties

of the system fall under two broad categories: some are like mass, which do not change with time,

while others are like position, which vary with time. Thus, a complete characterization of the system

and its behavior requires specifying the set ΠF of its constant or fixed-value properties and the set ΠV

of its time-varying properties, at any particular time. There are also a set of laws Λ that govern the

interactions of particles within the system among each other or with their environment.

Given Hamilton’s canonical equations of motion, a particular time t, and the constant properties

ΠF of the system, the values of all properties in ΠV of the system are in principle fully determined

if the position ~q(t) and the momentum ~p(t) of each of the particles are known initially. It is for this

reason that the classical state can be represented by a point (~q(t), ~p(t)) that lies in the phase space Ω

of the system. For example, if a single particle moving in one dimension has position q and momentum

p, then the state of the particle is given by ω(q, p) ∈ Ω.

All relevant dynamical quantities are then just real-valued functions of these phase points. In

mathematical terms, for every physical observable A there exists a function fA : Ω→ R such that for

any state ω,

fA(ω) = fA(q, p) (3)

gives the value of A for that state. Thus, in the case of a one-dimensional particle of mass m,

T = fT (q, p) =
p2

2m
(4)

represents its kinetic energy. In this case and that of most familiar dynamical quantities, there is a

continuum of possible values. However, it is always possible to construct ‘artificial’ observables that

takes only two values. Experimentally, such observables are in fact quite useful despite the apparent

lack of specificity. For example, one might ask, “is the kinetic energy of the particle larger than 1 J?”.

This question corresponds to an observable which yields 1 if the answer is ‘yes’ and 0 if the answer is

‘no’.
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P

Q

x

x = 0

Figure 3: Phase space of a very simple classical sys-
tem, that of a coin which can be heads or tails. Each
potential property is associated with a subset of phase
space, in this case the two halves of the real number
line.

In general, the structure of any possible experimental two-valued question is something like, “does

observable A have a value within the set ∆?” In which case, the state of the physical system of interest

assigns to the question the value

ω(A,∆) = 1 iff fA(ω) ∈ ∆, (5)

where fA : Ω→ R is the dynamical variable expressed as a phase-space function.

In classical mechanics, there are then two equivalent ways to think of the state of a system: (i)the

former involving a sequence of coordinates of position-momentum phase space that essentially deter-

mines the system’s properties at each instant, and (ii) the latter which regards the state as a binary

function of the set of experimental questions that describe the disposition of the system to yield certain

measurement outcomes. Later on it will be shown that the situation is very different for quantum

mechanical systems. In particular, it seems that only the ‘dispositional states’ of the latter type are

available; incompatible observables appear to suggest that it is impossible to assign property states to

a system.

3.2 Boolean algebras

Common to all quantum logical approaches is the aim of providing an algebraic account of quantum

theory. A great number of authors have sought to recapture the Hilbert space structure of quantum

mechanics by looking at the algebraic constraints to which the property lattice or event structure of any

quantum logical model must conform to. With that in mind, it is incumbent to provide a brief account

of the corresponding algebraic structure in classical systems. Our discussion here will be similar to

that of Hughes [13].

To illustrate the algebraic structure that coincides to the set of properties of a system, it is sufficient

to explore a very simple classical system—a coin that is either heads or tails. For this two potential

properties of the system, one can associate the real line where

P = set of points x ≥ 0,

Q = set of points x < 0. (6)

as indicated in fig. (3). Note here that the coin is classical because it properties can be associated with

subsets of a phase space, although in this case it isn’t position-momentum phase space.

It is also possible to represent the relations between subsets of this phase space by drawing a graph

where each node refers to a subset. Part of the network of all possible subset relations is illustrated

in fig. (4). In the diagram, the top node corresponds to the entire space (the real line) while the

8



P Q

P ∪ Q

P ∩ Q

Figure 4: Diagram for the subset relations of
properties of the classical coin. The nodes refer
to possible subsets and the lines denote proper
subset inclusion of subsets in the lower nodes
by sets in the higher nodes. For example, P ⊂
P ∪Q. In this simple example, P ∪Q = R and
P ∩Q = ∅.

bottom node is the null set. If any point in the graph can be reached from another by moving up

along the lines, then the subset represented by the node in the upper position properly contains the

subset represented by the node in the lower position. Thus, the lines in the graph actually represent

the relation of subset inclusion, i.e. for any set A of a higher node and set B of a lower node, B ⊂ A

and B is strictly smaller than A. Because each node also represents a possible property of the system,

the diagram also displays the relations among these properties.

For each property there is a corresponding sentence that expresses the fact that the system has the

property associated with the node in the graph. For example, the sentence ω ∈ P says that “the coin

is heads-up”.3 It is always possible to write compound sentences by combining elementary sentences

such as “the coin is heads-up” or “the coin is tails-up” (or equivalently, “ the coin is heads-up or

tails-up”). This compound sentence is the same as stating that ω ∈ P or ω ∈ Q. Such sentences are

called propositions and if logical connectives are used then one denotes

p = ω ∈ P,

q = ω ∈ Q, (7)

then

p ∨ q = ω ∈ P or ω ∈ Q = ω ∈ P ∪Q. (8)

It is also possible to construct other sentences such as

¬p = ω ∈ PC

p ∧ q = ω ∈ P ∩Q, (9)

where PC is the complement of P , which is defined whenever the set U = P ∪ PC is given (in this

case, U is the entire phase space but this is generally not the case). The network displaying all possible

subsets of the space obtainable by taking unions and intersections of P,Q, PC , QC is shown in fig. (5).

Each node also corresponds to an equivalence class of sentences that all say that the system has

a particular property. The fact that there are many possible sentences is obvious when the system

has properties whose values can be derived from more basic ones (i.e, one of them is a function of the

3For simplicity, the single quotation marks typically employed for delineating logical sentences is omitted for purely
mathematical expressions.
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CC QP
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CQP QPC

CQ
CP

CQP QPC
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Figure 5: The graph of all possible subset relations involving the sets P,Q, PC , QC . The lines indicate subset
inclusion of the lower nodes by the higher nodes to which they are connected. This ‘lattice’ structure represents a
simple Boolean algebra.

other). For example, the statement “the particle has momentum zero” has the same meaning as “the

particle has zero kinetic energy” and can both be represented by the same subset or graph node. The

equivalence class of such statements is what is properly called the ‘propositions of the system’.

The discussion above tells us about the equivalence of the following sets of different objects:

(a) the set-theoretic relations among elements of a family of sets,

(b) the conceptual relations between members of a list of the relevant properties of a system; and

(c) the logical relations that hold between propositions belonging to various equivalence classes.

These sets are isomorphic to one another. Because they have the same algebraic structure, they are

all represented by the same graph, which in the case of the coin example is shown in fig. (5). The

common abstract structure represented by this diagram is an example of a Boolean algebra.

The algebra B is a Boolean algebra if B = 〈B,∨,∧,¬, 0, 1〉 where B is the set of elements that

contain at least two elements designated as 0 and 1, ∨ and ∧ are binary operations and ¬ is a unary

operator on B, where the operations satisfy the following identities:

a ∨ b = b ∨ a, a ∧ b = b ∧ a,
a ∨ (b ∨ c) = (a ∨ b) ∨ c, a ∧ (b ∧ c) = (a ∧ b) ∧ c,
a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a,

a ∨ (b ∧ ¬b) = a, a ∧ (b ∨ ¬b) = a,

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

(10)

The list of postulates were chosen above to show the symmetry between ∨ and ∧. The first two

lines are just the commutativity and associative of the binary operations, the third line is called the

‘absorption’ postulate, the fourth line describe the properties of the ¬ operation and the last line shows
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the distributivity between ∨ and ∧. In this language, ∨,∧, and ¬ are known as ‘join’, ‘meet’ and

’negation’, respectively.

It follows that for any a, b ∈ B

a ∨ a = a, a ∧ a = a,

a ∨ ¬a = b ∨ ¬b, a ∧ ¬a = b ∧ ¬b,
¬(¬a) = a.

(11)

It says that there exists elements of B such that a ∧ ¬a and a ∨ ¬a do not depend on the choice of a.

These elements are defined as

0 ≡ a ∧ ¬a, (12)

1 ≡ a ∨ ¬a. (13)

One can show that these elements also obey De Morgan’s laws:

¬(a ∧ b) = ¬a ∨ ¬b,

¬(a ∨ b) = ¬a ∧ ¬b. (14)

The Boolean operations are all completely characterized by their action on {0, 1}, that is, they are

defined completely by the elementary Boolean algebra B2. A consequence is that any Boolean algebra

B can be homomorphically mapped onto B2. In other words, there exists functions which map B onto

B2 that preserve the Boolean operations ∨,∧ and ¬. Formally,

Theorem 1. For any Boolean algebra B = 〈B,∨,∧,¬, 0, 1〉, there exists functions g : B → {0, 1} such

that for all a, b ∈ B

g(a ∨ b) = g(a) ∨ g(b),

g(a ∧ b) = g(a) ∧ g(b), (15)

g(¬a) = ¬g(a),

where the operations ∨,∧,¬ on the right-hand side are Boolean operators on B2.

The significance of mappings g for classical logic should be clear. By treating 0 and 1 as ‘false’ and

‘true’, the map g becomes a truth-functional that assigns truth-values to propositions of the Boolean

algebra B, which was previously demonstrated to be isomorphic to the list of properties of the system.

It allows us to talk about the truth-value of propositions like p∧ q in terms of the truth-values of p and

q.

It is also often said that classical systems exhibit a Boolean lattice. To rigorously define the lattice

structure, a partial ordering relation must be specified. In set-theoretic language, this partial ordering

relation is synonymous to subset inclusion. In terms of logical connectives, the ordering relation ≤ is

properly specified by the following biconditional:

a ≤ b iff b = a ∨ b (iff a = b ∧ a ). (16)
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The relation ≤ of eq. (16) has the standard properties of partial ordering, i.e., for all a, b, c ∈ B,

Reflexivity: a ≤ a,

Transitivity: a ≤ b, b ≤ c⇒ a ≤ c, (17)

Anti-symmetry: a ≤ b, b ≤ a⇒ a = b.

This partial ordering is represented by the lines of the ‘lattice’ in fig. (5).

For completeness, let us make two more definitions, one about the idea of atomicity, the other about

the important concept of ultrafilters.

Definition 1. An element a is an atom of the Boolean lattice B if a 6= 0 and for all a, b ∈ B, b ≤ a

implies b = 0 or b = a. Note that all finite Boolean algebras are atomic.

Definition 2. The ultrafilter U of an atomic Boolean algebra B is a set of elements of containing just

one atom a and all points b such that a ≤ b. More precisely, if U is an ultrafilter on B then for all

a, b ∈ B,

a ∨ b ∈ U iff a ∈ U or b ∈ U ,

a ∧ b ∈ U iff a, b ∈ U , (18)

¬a ∈ U iff a 6∈ U .

There is a one-to-one correspondence between the set of ultrafilters on B with the set of homomor-

phisms gU : B → B2. This correspondence enforces the truth-functional behavior of propositions in the

Boolean lattice.

What has been shown so far is the isomorphism between a propositional lattice and some Boolean

algebra. But note that Boolean algebras are purely structural: no special meaning needs to be attached

to the operations. This means that it is possible to come up with other algebraic structures isomorphic

to a Boolean lattice and completely abstract (no attached truth values or any semantic content for

that matter). However, it is widely known that the set-theoretic realization has a special status: a

representation theorem due to Stone [14] says that every Boolean algebra is isomorphic to a field of

sets. This is significant in the context of classical physics because it means that it is more appropriate

to think that because the logic of propositions about classical systems is Boolean, the propositions can

be represented by subsets of a phase space. Most physicists are trained to think about this the other

way around, i.e., that classical state phase space leads to a Boolean property lattice.

It is also worth noting that for classical systems, the graphs are all powers of two (so we can label

them like G2N ), all of which can be constructed from multiplication of the basic graph G2, which has

two vertices corresponding to 0 and 1, and one edge [3]. G2 refers to a very basic proposition of the

system and asks only whether such a property exists or not.

4 The logic of quantum physics

In 1936, Garrett Birkhoff and John von Neumann published a landmark paper [16] demonstrating how

the logical structure of quantum theory is characterized by the lattice of closed linear subspaces of

Hilbert space. This algebraic structure has some similar elements with Boolean algebras (for example,

the sublattice of commuting observables is, in fact, Boolean) but where they differ clearly determines

the point of departure of quantum logic from classical logic. To show their result, they have to postulate

the dependence on Hilbert space at the onset. A major part of the quantum logical approach is to
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reconstruct the same lattice structure from a primitive set of axioms that does not start with a Hilbert

space.

Quantum logic has long been accused of being a notoriously difficult subject, mainly because a

full appreciation for it requires knowledge of some profound and sophisticated logico-algebraic notions

that are not normally encountered outside philosophy and advanced mathematics. In light of such

difficulty, it behooves us to emphasize for a moment what benefits can be gained by going through all

the seemingly unnecessary abstractions of quantum logical approaches.

Redhead [24] describes one unexceptionable way of thinking about what quantum logic is about.

He said that the motivation of quantum logic is expressed by the following equation:

L+ P ′ = L′ + P, (19)

where L refer to classical Boolean logic, the new paradoxical physics in quantum theory P ′, L is

quantum logic and P is the sensible, intuitive physics of classical systems. In other words, the aim is

to retain the more familiar classical picture in quantum mechanics by modifying the logic of quantum

propositions from classical Boolean logic rather than changing the physics to accommodate the quantum

results.

Let us look at a short historical overview of quantum logic. The discourse in this section follows

closely the account in Cooeke, et al. [5]. It begins with a review of the important properties of the

projection lattice of Hilbert space as formulated by Birkhoff and von Neumann.

4.1 Orthocomplemented projection lattices

John von Neumann’s monumental treatise on quantum mechanics [17] established the most widely-

accepted theoretical framework of the theory, in which each quantum system is associated with a

Hilbert space H, each unit vector ψ ∈ H specifies a possible state of the system, and each physical

quantity associated with the system is represented by a self-adjoint linear operator A ∈ L(H). One can

trace the origins of quantum logic with this particular formalization of quantum mechanics. Although

it is conventional to think of physical properties in terms of the self-adjoint operators, it is actually

more natural to associate quantum states with projection operators (for one, it eliminates the non-

uniqueness of state vectors because of an undetermined overall phase). The argument is that it is the

projection valued measure PA, more than the operator A, that most directly carries the statistical

interpretation of quantum mechanics. For instance, if P ≡ PA(B) is the spectral projection associated

with an observable A and a Borel set B, one may construe this observable as “testing” whether or not

A takes a value in B. In fact, von Neumann himself regarded P as representing a physical property of

the system (or, rather of the state of the system).

To describe the projection lattice, it is helpful to first introduce several definitions relevant for

subspaces:

Definition 3. Given a vector space V , the set of vectors S ⊆ V is called a subspace of V if and only if

(a) 0 ∈ S,

(b) if |si〉 ∈ S then r =
∑

i ci|si〉 is some vector in S for scalars ci ∈ C.

Addition and scalar multiplication are inherited from the vector space V .

Definition 4. The set S⊥ of all vectors orthogonal to S is the orthocomplement of S. That is,

S⊥ = {|x〉 : 〈x|y〉 = 0, |y〉 ∈ S}. (20)
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Some important properties of orthocomplementation operator ⊥:

(S⊥)⊥ = S,

S ∩ S⊥ = 0, (21)

S ⊕ S⊥ = 1.

Definition 5. For subspaces S, T , the set S ∩T is called the meet of S and T . It is a subspace defined

by

S ∩ T = {|x〉 : |x〉 ∈ S, |x〉 ∈ T}. (22)

Definition 6. For subspaces S, T the smallest subspace containing both S and T is S ⊕ T , called the

join or linear span of S and T :

S ⊕ T = {as+ bt : s ∈ S, t ∈ T ; a, b ∈ C}. (23)

One useful way to think of the lattice of subspaces is to think of how it replaces the subsets of phase

space in classical mechanics. Def. (4) is the analogue of complementation for sets, although a subtle

difference results from how the orthocomplement S⊥ involves only vectors orthogonal to S, whereas

the complement PC of P may involve any element outside of P . Def. (5) is essentially the same as

taking intersections of sets but with subspaces. Def. (6) provides the biggest difference with sets, since

the direct sum S ⊕ T is not at all the same as the union S ∪ T . The direct sum or linear span includes

all linear combinations of vectors in S and T , which is a much bigger set of vectors than just combining

the elements of S and T .

The binary operations ⊕,∩ and the unary operation ⊥ correspond to logical connectives ∨,∧,¬,

respectively, for the set of quantum mechanical propositions. The propositional calculus associated with

Hilbert subspaces equipped with a partial ordering relation between the closed subspaces—basically the

same as subset inclusion if one thinks of subspaces as sets of vectors with some additional relations—

defines the projection lattice, denoted by P(H).

Indeed, if P and Q are commuting projections, then their meet P ∧ Q and join P ∨ Q in the

lattice P(H) may be interpreted classically as representing the conjunction and disjunction of the

properties encoded by P and Q. If P and Q do not commute, however, then they are not simultaneously

measurable and the meaning P ∧Q and P ∨Q is less clear. In particular, P(H) is orthocomplemented

and so it enjoys analogues of the de Morgan laws for subspaces. Furthermore, the sub-lattice generated

by any commuting family of projection operators is a Boolean algebra since commuting observables are

effectively classical.

It is worth noting that while von Neumann talked of simultaneous measurability or testability of

properties of a quantum system, he did not exactly distinguish between decidable and undecidable

properties. Classically, any subset of the phase space counts as a categorical property of the system,

and nothing in principle prevents us from taking a similar view in quantum mechanics. However,

only closed linear subspaces of Hilbert spaces correspond to physical observables that are decidable by

measurement. It is because of this lack of commensurability of all potential properties that the lattice

P(H) of mutually orthogonal projections of a Hilbert space does not constitute a Boolean algebra.

The most distinguishing feature of P(H) is that it is a non-distributive lattice, that is, if A,B,C

are distinct propositions about some physical properties then in general,

A ∩ (B ⊕ C) 6= (A ∩B)⊕ (A ∩ C), (24)

of which the spins along perpendicular directions in a Stern-Gerlach apparatus and the electron two-
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Figure 6: The Greechie lattice G12 of subspaces
of two triples a = {U, V,W} and b = {X,Y,W}
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a distributive sub-lattice of eight elements. Since
each subset is complemented, these sub-lattices are
also Boolean algebras.

slit experiment provide concrete examples. Hilary Putnam [18] characterized the difference between

classical and quantum logic mainly by this failure of distributivity. However, this is a weak and even

misleading characterization of the projection lattice—it is not merely non-distributive [1]. In terms of

a Kochen-Specker type of analysis, quantum logic has a particular non-Boolean lattice: it is some sort

of splicing together of Boolean algebras within a larger non-Boolean structure.

To have some idea of what type of lattice Hilbert subspaces generate, an example is given in fig. (6).

This is the Greechie lattice G12 generated by subspaces of two distinct sets of three orthogonal vectors,

{~u,~v, ~w} and {~x, ~y, ~w}, in a three-dimensional Hilbert space [13], where L~x denotes the ray spanned

by ~x with orthocomplement L~x⊥ , and so on. G12 is a partial Boolean lattice with two distributive

sub-algebras generated by L~x, L~y, L~w and L~u, L~v, L~w, which are ‘pasted together’ at the minimum and

maximum elements.

4.2 Mackey’s probability calculus

In a review article [19] written in 1957, George Mackey introduced the idea of treating probabilities

associated with quantum events as a form of non-standard probability model, mainly by substituting

in the projection lattice P(H) for the classical Boolean algebra of classical events. A re-derivation of

the projection lattice is achieved from the premise that the logic of quantum experimental propositions

is most accurately represented by P(H).

In Mackey’s formulation, quantum states and observables can be expressed purely in the language

of P(H) in the following manner:

Definition 7. Any statistical quantum state Q determines a probability measure on P(H)

ωQ : P(H)→ [0, 1](P 7→ tr {PQ}), (25)

where P is a projection operator in P(H). Gleason’s theorem guarantees us that the probability measure

on P(H) will have this unique form.

Definition 8. Any physical observable A that takes values from the measurable space A may be repre-

sented by a projection-valued measure via the mapping

MA : A → P(H) (26)

where for each set B ∈ A, the projection MA(B) refers to the proposition “observable A yields an
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outcome within the set B when measured”.

To obtain probability measures on A probability measures on P(H) can be pulled back along the

function MA so that

prob(b ∈ B,m = MA(b)|Q) = ωQ(MA(B)) = tr {MA(B)W} , (27)

provided that the state of the system before measuring observable A is Q. A connection with von

Neumann’s representation of observables is then readily established: If f : S → R is any bounded

classical real-valued random variable defined on S then define the self-adjoint operator

Af =

∫
S

f(s)dM(s) (28)

so that for any probability measure µ on P(H), the expectation value of observable A is

〈Af 〉 =

∫
s

f(s)dM∗(µQ(s)) = tr {AfQ} , (29)

where Q is the density operator corresponding to µQ. This is just the usual expression for quantum

mechancial expectation values.

Although an algebraic structure fully isomorphic to the projection lattice is recovered from this

model, it admittedly has one crucial ad hoc element: the Hilbert space H itself. Therefore, one still

needs to explain why natural systems are modeled using projection operators on Hilbert spaces and

not by some more general mathematical space. Mackey himself attempted to deduce a Hilbert space

model by starting with an abstract structure (O,S, p) where O represent real-valued observables, S

represent physical states of the system, and p is a mapping

p : O×S→ δ : (A, s) 7→ pA(a|s), (30)

where δ is the set of Borel probability measures. The intended interpretation is that pA(a|s) gives

the probability distribution for measurement outcomes a of the observable A when the system is in

the state s ∈ S. The pair (A,B) represents the experimental proposition that a measurement of

observable A yields an outcome in the real Borel set B. In this formulation, two propositions are

deemed equivalent if they produce the same probabilities in every state. The set L of experimental

questions PA,B ≡ pA(B|s)∀s ∈ S defines the quantum logic. With point-wise partial ordering on S,

the set L is an orthocomplemented, partially ordered set with unit 1 given by PA,R for any observable

A and whose orthocomplement P⊥A,B is given by P⊥A,B = 1− PA,B = PA,R\B .

Despite the considerable strengths of Mackey’s framework, it does suffer from one major weakness:

it takes probability as a primitive concept. It therefore inherits all the problems associated with

the concept of probability, in particular, questions about interpreting probabilities: do they represent

objective properties of a system, or degrees of knowledge or belief, or some predisposition of systems

to yield particular measurement outcomes? There are some modern approaches developed around

Mackey’s formalism involving orthoalgebras that now have probability as a derived notion but these

topics are beyond the level of this essay.

4.3 Piron’s question-proposition system

It has been said that much of the structure of the projection lattice P(H) is reproduced in Mackey’s

probabilistic formulation. Nevertheless, the lattice of closed subspaces of Hilbert spaces has more
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regularity built into it as opposed to the rather general orthocomplemented lattice one arrives at with

Mackey’s axiomatization. Piron’s [20] efforts gets us closer to the projection lattice by employing

a framework that considers a physical property to be determining factor in obtaining outcomes of

experimental tests with certainty.

In constructing his axiomatic formalism, Piron was thinking about a realistic point of view, which

takes the idea that a physical system has well-defined, pre-determined properties, whether or not the

values of these properties are known by anyone. In such a scenario, it is straightforward to ask whether

there are suitable experimental tests for measuring the value of any property. It is sufficient to consider

a set of questions Q with binary outcomes. The state of the system P can be thought of as a preparation

procedure that ‘causes’ the system to yield definitely affirmative outcomes for some particular tests.

To go further, it will be useful to introduce the following definitions:

Definition 9. A question α ∈ Q is any experiment that generates outcomes corresponding to a ‘yes’

or ‘no’ response. If one can confirm that the outcome will always yield ‘yes’, then the question is said

to be true for the system under investigation.

Definition 10. The set of all questions that are true for a given physical system defines its state. Note

that because the state will generally evolve according to some dynamical law, the value of properties

may change with time. Therefore, the truth value of a question is also a function of time.

Definition 11. A question α is deemed stronger than the question β if β is true every time α is true.

This is a relation expressing a physical law which shall be expressed as

α ≤ β. (31)

This partial ordering relation ≤ defines an equivalence class of questions α, which are referred to as

propositions. A proposition [α] is true whenever any question in the equivalence class is true. A true

proposition can be identified with an actual property of the system while any other proposition refers to

a potential or possible property of the system.

Let L ≡ {[α] : α ∈ Q} be the set of all such propositions, considered as a partially ordered set

under set inclusion ⊆. Note that [α] ⊆ [β] if and only if every preparation making α certain necessarily

makes β certain as well. There is a theorem that tells us about the structure of L.

Theorem 2. The set L of all propositions defined for a system and equipped with a partial ordering

relation ≤ is a complete lattice.

To show this, one only needs to show for any subset A of propositions ai there exist propositions b

and c in A such that

• given ai ≤ b, and if ai ≤ d then b ≤ d, the element b = ∨ai is called the supremum or least upper

bound of A, while

• given c ≤ ai, and if e ≤ ai then e ≤ c, the element c = ∧aj is called the infimum or greatest lower

bound of A.

The symbols ∨ and ∧ are used in anticipation of the fact that they will be directly related to the logical

connectives ∨ and ∧. There are two trivial propositions 0 and 1, which correspond to the minimal and

maximal elements of propositions of the entire partially-ordered set. If one defines

∨ ai = ∧x, ai ≤ x ∀i, (32)

then it follows that ∧ corresponds to ∧. However, ∨ only corresponds to one direction of ∨ (a∨b⇒ a∨b)
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unless it can be shown that the lattice is distributive (which is not desired if one is attempting to

reconstruct the projection lattice).

The state S of the system is completely defined by the true proposition p = ∧x, x ∈ S since

S = {x : p ≤ x, x ∈ L}. (33)

Completeness of the lattice requires the hypothesis that p is an atom, which follows directly from this

postulate:

Axiom 1. If a is a proposition different from the trivial one 0 then a is true for some state and there

exists an atom p ≤ a.

It is also necessary to define the orthocomplement a⊥ for a:

Axiom 2. For any a ∈ L let there be a dual proposition a⊥ called the orthocomplement of a such that

a′ ∨ a = 1,

a′ ∧ a = 0, (34)

such that there exists questions α ∈ a and α′ ∈ a′ where α′ is just the inverse question of α obtained

by exchanging ‘yes’ and ‘no’.

Note that there is also a theorem regarding the Boolean substructure of compatible propositions:

Theorem 3. If for each state and each proposition a = [α] it is the case that either “a is true” or “a⊥

is true” then L is Boolean and isomorphic to the lattice of all the possible subsets of some set.

The projection lattice is a partial Boolean algebra for commuting observables so the theorem will

apply for the sub-lattice of compatible propositions in L but not the entire lattice itself.

Finally, although the lattice is not distributive, it has a weaker sort of distributivity called ortho-

modularity:

Axiom 3. The lattice L is orthomodular if for a, b, a⊥, b⊥ ∈ L, where a⊥, b⊥ are the orthocomplements

of a, b, respectively,

a ≤ b⇒ a⊥ = b⊥ ∨ (a⊥ ∧ b⊥). (35)

Summarizing, it is possible to introduce just a few additional axioms in order to make Piron’s

question-proposition system L a complete, atomistic, orthocomplemented lattice satisfying the covering

law:

(a) Completeness: By taking into account product questions and demanding closure under forma-

tion of arbitrary product questions lead to L being closed under arbitrary intersections.

(b) Orthocomplement: There exists an inverse question α⊥ to α defined by interchanging the roles

of the dichotomic alternatives. What is required is [α]∩ [α⊥] = ∅, [β⊥]∩ [α] = 1 for some β ∈ [α].

(c) Orthomodularity: This essentially introduces distributivity for compatible questions.

(d) Atomicity and the Covering Law: This is imposed in a somewhat ad hoc fashion but with

substantial physical motivation.

Now it must be said that Piron’s axioms lead to a lattice L that is isomorphic to the lattice of closed

subspaces of a generalized Hilbert space. (Because of orthomodularity, the quantum Hilbert space is

not uniquely singled out.) A more serious limitation of Piron’s axioms can be found when considering

the composition of two or more separate systems. For example, if one has a bipartite system where

each subsystem conforms to the axioms individually, the combined system as a whole conforms to the

axioms if and only if one of the subsystems is classical in nature [21].
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4.4 Foulis-Randall operational framework

David Foulis and Charles Randall [22] synthesized ideas from their dissertations on abstract lattice

theory and concrete operational statistics, respectively, in order to develop what is termed empirical

quantum logic. Their formalism is based on the primitive notion of an operation or test–that is, a

well-defined mutually exclusive alternative possible outcomes. Although this idea pertains to possible

experiments that can be performed, similar to Piron’s formalism, it is different in that instead of

treating the questions or propositions as basic elements, here the outcomes are the building blocks of

the axiomatic system. Part of the idea is motivated by trying to develop a theoretical framework that

does not preclude the concept of state or property for the system (which is essentially assumed).

The Foulis-Randall theory focuses on test space, i.e., collections T of overlapping experimental

tests. Letting X =
⋃
T be the outcome space of T, a statistical state on T is defined by a function

ω : X → [0, 1] such that ∑
x∈T

ω(x) = 1, (36)

for any test T ∈ T. A variety of algebraic, analytic, and order-theoretic objects can be attached to any

test space T, each serving as some particular form of logic. If T is algebraic, one can construct from

the events of T a well-behaved ordered partial algebraic structure Π(T) called an orthoalgebra, which

have a natural generalization to orthomodular partially ordered sets (of which the projection lattice is

an example).

An advantage of this approach is that test spaces are often much easier to analyze and manipulate

than their associated logics. They also have the heuristic advantage that the operational definition is

readily apparent, since test spaces just correspond to particular experiments. Moreover, if T is algebraic,

there exists a canonical order-preserving map L→ L from the logic L of T into the property lattice L
associated with any structure (T,Σ) over T. In both classical and quantum mechanics, the map is an

isomorphism so that L inherits completeness from the lattice while L derives orthocomplementation

and orthomodularity from the ordering relation (implication) of the logic. It is mostly taken for granted

that such an isomorphism is the exception rather than the rule. The tendency to identify L with L is

something that has caused a great deal of unnecessary confusion in discussions of quantum foundations,

especially in quantum logical affairs.

In 1982, Foulis and Randall collaborated with Piron to develop a comprehensive realist-operationalist

framework of quantum theory, establishing the so-called ‘Geneva school’ approach to quantum physics.

The Geneva school argues that the realistic view implicit in classical physics does not necessarily have

to be abandoned to accommodate some of the less intuitive concepts of quantum mechanics. Rather,

one should instead give up on the presupposition that any set of experimental test possesses some

common refinement (in other words, that experiments are always compatible with other experiments).

This approach in no way excludes the notion of physical systems existing exterior to an observer, nor

does it imply that the properties of such systems depend on what the observer knows about the sys-

tem. Aside from the previously defined statistical state by Foulis and Randall, the realist-operational

version also introduces the notion of a realistic state represented by some type of subset of X called

the support, representing all possible outcomes in that state.

Thus, generally speaking, the Foulis-Randall-Piron formalism is primarily concerned with making

a sharp distinction between the event calculus or the operational logic and the property lattice which

it represents. In Hilbert space, these two mathematical structures are isomorphic, and all of these are

isomorphic to the lattice of closed linear subspaces of Hilbert space. However, any axiomatic system that

tries to reproduce the projection lattice without assuming Hilbert spaces in advance should carefully

distinguish between event and propositional lattices, which usually have different formal structures.
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More recent developments of quantum logic in the last few decades take most of the mathematical

aspects of this work further, as the various features of abstract test spaces, orthoalgebras and generalized

orthomodular structures were studied as a pure theoretical exercise. These modern algebraic studies

involve advanced mathematical notions in areas such as category theory, computational semantics, and

non-commutative geometries, which are arguably outside the scope of what is needed here.

5 Hidden variables and quantum logic

According to Allen Stairs [25], it is important to recognize the distinction between what is considered

the core of the position of quantum logic and the way in which this core is applied or interpreted.

The core of quantum logic, first made clear in the work of Demopoulos and Bub [26], says that the

physical world has a logical structure that governs the relations of exclusion, inclusion, compatibility

and equivalence among possible events or states of affairs that is manifestly different from what one

would expect if they satisfied classical logic.

There is sometimes another claim associated with quantum logic, namely that every physical mag-

nitude has a value in every state, which may be referred to as the value-definiteness of properties of

the system. This thesis should be taken to be part of the interpretation of the core, which seems more

natural in the context of a deterministic hidden variable theory. The difference is that the denial of any

hidden variables is fundamental to quantum logic. Formally, one can even use quantum logical meth-

ods to reproduce Bell’s lemmas [27], a crucial element of the theorem ruling out local hidden variable

theories. A related result by Kochen and Specker examines whether a suitable classical phase space

with hidden variables can be constructed for quantum systems such that the measurement statistics

are recovered, wherein non-contextual hidden variables are ruled out. Before examining the various

quantum logical interpretations of quantum theory, a short digression into what quantum logic has to

say regarding the issue of hidden variables in quantum mechanics is covered in this section; in partic-

ular, the debate between Jauch and Piron on one side and Bohm and Bub in the other is focused on

here. For a concise yet somewhat dated background on this topic, one can take a look at Bell’s account

[28].

In the classic von Neumann proof of the impossibility of a hidden variable model for quantum

mechanics, he used an assumption for any real, linear combination of observables, compatible or not.

It states the following: for any pair of observables A,B if C = xA+ yB, with x, y ∈ R then

v(C) = x(v(A)) + y(v(B)), (37)

where v(C) refers to the eigenvalue of observable C. Bell and Mermin remark that this is a “silly”

assumption because when A and B do not commute, they are not simultaneously observable and

therefore, there is no reason to insist on such a requirement.

In a paper they published in 1963, Joseph Jauch and Constantin Piron [15] claimed to have come

to the same conclusion as von Neumann without using the linearity assumption. Their impossibility

proof is based on an analysis of the types of experimental questions that can be appropriately asked

in the theory. They considered those physical observables with only two alternatives or possibilities,

which may be denoted by 0 or 1, and are represented in quantum theory by projection operators.

The outcomes of these binary tests, for example that “observable Q has value q,” are called propo-

sitions of the system. Propositions are compatible or incompatible depending on whether or not the

corresponding measurements can be performed simultaneously. Jauch and Piron proved a theorem in

this propositional calculus that if a propositional system admits hidden variables then all propositions

are deemed compatible. In this way, hidden variables are ruled out for quantum theory since there is
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unequivocal evidence that there are pairs of observables such as position and momentum that can not

be determined simultaneously.

In a spirited defense of hidden variables, David Bohm and Jeffrey Bub [29] argued that the Jauch-

Piron analysis is fundamentally flawed, since it claims that the existence of incompatible propositions

is an “empirical fact”. Such incompatible propositions could be taken as necessary inferences from

experiment only if it could be established that no other propositions besides those of quantum me-

chanics are valid descriptions of quantum systems. Thus, Jauch and Piron have set out to assume that

orthodox quantum theory is correct formally and requires no extensions, which of course, will lead to

the conclusion that no hidden variable can be introduced. In fact, their result is somewhat trivial,

since they are merely restating well-known results by Bell, Kochen, and Specker in the language of

the projection lattice of a Hilbert space. If there are hidden variables do underlie quantum mechanics,

Bohm and Bub contend that it is then possible to express experimental questions without using in-

compatible propositions; rather, simultaneous descriptions of incompatible observables only imply that

determining their values involve incompatible processes of measurement.

Jauch and Piron [30] responded to Bohm and Bub’s attack by raising the following points:

(a) The validity of quantum mechanics is not assumed in advance. One merely assumes the lattice

structure of yes-no experiments that come directly from experimental facts.

(b) No assumptions are made regarding states being linear functionals on the propositions. Indeed,

linearity cannot even be expressed here since addition on propositions is undefined.

(c) No coherence is presumed in the lattice, allowing for valid inferences for systems with superselec-

tion rules.

They insist that Bohm and Bub have misrepresented their position, one that actually follows in spirit

to what von Neumann tried to do but is done by reducing the restrictions imposed by von Neumann to

the minimum required for making valid inferences about potential hidden variable models. What they

found was that hidden variables in quantum mechanics suggest that every physically realizable state

can be represented as a mixture of dispersion-free (that is, zero uncertainty) states. Physically, this

means that if one prepares an ensemble under identical relevant conditions, this ensemble in principle

could be treated as composed of sub-ensembles which are dispersion-free in all physical quantities.

Jauch and Piron claimed that their main result shows that the existence of hidden variables in this

sense would entail some properties of the lattice of propositions which are incompatible with known

observational facts, specifically those involving Heisenberg-Robertson uncertainty relations.

Bohm and Bub [31] replied to this by pointing out how Jauch and Piron themselves admit that

the lattice is an assumption in their analysis. The lattice structure of propositions, as specifically

specified by Jauch and Piron, cannot be a unique and inevitable inference from known facts. Bohm

and Bub raised the point that axioms of a theory “stand on a different level from the experimental

facts underlying the theory.” Axioms are always assumptions from which inferences are drawn about

what is observed. If the logical inferences agrees with experimental evidence, then the axioms are

confirmed. However, confirming the axiomatic structure in this way never implies that no other set

of axioms is possible. What happens specifically in Jauch and Piron’s case is that they are trying to

answer a question framed in a formal structure which excludes hidden variables at the onset. What

one needs is to start with an axiomatic framework that allows for the possibility of hidden variables

and explore this system to see whether they are ultimately ruled out. There is a suggestion by Bohm

and Bub that the model of Jauch and Piron may be modified to allow hidden variables in this manner

although the specific details are not mentioned and will not concern us here.

So what is the verdict? It seems to depend on whether or not one accepts that an abstract lattice

structure for experimental propositions (tests or outcomes in a more recent contexts) is an appropriate
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starting point for developing quantum theory from foundational concepts. If so, then it seems Jauch and

Piron have accomplished something significant, albeit it would have more resounding consequences for

hidden variables if shown in a similar but more generalized framework like the Foulis-Randall extension

of Piron’s axioms. If not, then Bohm and Bub’s argument wins the day in convincing fashion, with

nothing more to say than to reiterate the idea that Jauch and Piron’s proof is a misguided exercise in

circularity. In some sense, the debate becomes a question of whether the problem of a hidden variable

model for quantum mechanics is fundamentally a question about the logical structure of the theory. In

fact, a quantum logician would say that quantum mechanics is really a theory about how logic really

applies in the world, and it seems to be a very non-classical one.

6 Interpretations of quantum logic

Foundational studies in quantum mechanics have consisted in large part of attempts to avoid certain

paradoxes or anomalies in the theory. Bohr and Reichenbach attempted to avoid some of these seeming

absurdities by altering quantum theory’s logic rather than any of its specific axioms. Some examples

of these paradoxes include the two-slit paradox, the quantum tunneling paradox, the orbital electron

paradox, the Schrodinger cat paradox, and the EPR-Bohm paradox. The two slit paradox was discussed

in the first section and was used for motivating quantum logic. The tunneling or barrier penetration

paradox involves a particle escaping a potential well despite the fact that its total energy is less than

the potential barrier. The orbital electron paradox is due to Heisenberg and refers to the how the

probability to find an electron an arbitrary distance from the nucleus of any atom is always nonzero.

The Schrodinger cat is the famous example in Schrodinger’s 1935 paper [32], where the issue about

how to explain the non-existence of simultaneously dead and alive cats. The EPR-Bohm paradox has

to do with the intertwined properties of entangled particles, such that measuring the value of a certain

property of one particle determines precisely the value of the same property for the other particle no

matter how far apart these particles may be.

The usual solution to these problems is to adopt the Copenhagen interpretation, usually attributed

to Heisenberg and Bohr, which would say that the interaction between objects and measuring in-

struments sets an absolute limit to what can be said about objects independent of the observation.

Heisenberg remarked that the concept of the probability function does not allow a description of what

happens between observations. Any attempt to find such a description would lead to contradictions.

For example, there is no paradox for orbital electrons because the argument for it demands reference to

the energy at a particular position but such would require the simultaneous observation of the position

and momentum, which never happens. If the result of measuring a quantity cannot be predicted with

certainty, no statement about its value is true or even meaningful.

One of the main objections by a quantum logicians to the Copenhagen interpretation is that the

theory embodies a certain formal awkwardness—specifically that well-formedness of a logical propo-

sition is not a purely syntactic property. For reasons such as this, Reichenbach proposed to admit

sentences about measured quantities as meaningful but to ascribe to them a third truth-value, which

he called ‘indeterminacy’. Putnam offered a more comprehensive program that outlined some of the

most ambitious claims made on behalf of quantum logic: a realist interpretation of empirical quantum

logic. More recent interpretations have backed down from a strong realist thinking and have adopted

an operational approach, where ‘properties’ and ‘states’ of systems are mostly treated in an empirical

manner in terms of experimental tests. These various interpretations of quantum logic are explored in

this section.

22



6.1 Reichenbach’s three-valued logic

Reichenbach’s trivalent quantum logic (in contrast with bivalent Boolean logic) is fundamentally a

semantically motivated interpretation of quantum theory that provides a rather simple solution to the

problem of meaningless statements. The starting point of Reichenbach’s consideration was Heisenberg’s

principle of indeterminacy, which implies that a physical property has no definite value whenever its

complementary variable has been measured. As a logical empiricist, Reichenbach subscribed to the

ideal of a scientific language not containing any meaningless statements at all. He proposed to reserve

the label ‘meaningless’ to statements about quantities unmeasurable in every physical situation and

call statements which may have been true or false in a different circumstance (for example, for positions

when the momentum is not measured) indeterminate.

The truth value ‘indeterminate’ is considered by harsh critics to be a bastard of sense and nonsense,

mostly because they feel it is not sufficiently well-defined [33]. However, this accusation is completely

unfounded: a simple example will suffice to show how indeterminate statements occur all time. Bor-

rowing a proposition from arithmetic, let us consider the conditional definition for division of real

numbers,

Definition 12. Given a, b ∈ R, there is an operation called division such that when b 6= 0

a

b
= c⇔ a = b · c, (38)

where · refers to the multiplication of two real numbers and c ∈ R.

The value of
a

b
is said to be indeterminate 4 when the initial condition is not satisfied, i.e. b = 0.

Thus, an uncontroversial way to get indeterminate statements is from conditional definitions, something

that is encountered all the time in mathematics. The philosopher Ulrich Blau even claims that the

informal logic of our normal language is more adequately reconstructed as a three-valued logic [34].

However, it must be said that three-valued logical operations do not fit properly into truth tables

in the same manner that Boolean logic easily would. The adequate way to define them will have to use

conditional definitions. Obtaining an ‘indeterminate’ truth value for a logical operation just means it

is undefined for the propositions involved.

In Reichenbach’s logic, the setM of measurement propositions is not closed under most of the logical

connectives, that is, not all propositions one can write down using operators ∧,∨,¬, for example, are

necessarily permissible propositions. This is a direct consequence of the fact that most logical sentences

will involve conditional definitions, in particular those statements pertaining to measurement situations

with incompatible observables.

Reichenbach’s truth functional theory was criticized by many because while von Neumann’s lattice

exhibit some of the structure inherent to the conceptual framework of quantum theory, namely the

orthocomplemented, weakly modular lattice for measurement propositions, this important structure

can’t be discovered in Reichenbach’s quantum logic. However, this is again not the case. When consid-

ering the set M as a lattice, one just requires additional postulates to recover an orthocomplemented,

weakly modular structure. Moreover, unlike other axiomatic frameworks, the postulates require no

extra-logical notions. (For example, Mackey’s formulation requires the concept of probability, which

is strictly not a syntactic logical element.) That none is needed here demonstrates the strength of

Reichenbach’s theory.

Omitting the technical specifics, the axioms needed pertain to contradiction (A ∧ ¬A), diametri-

cal negation (−A ∈ M) (which is different from complete negation ¬A and cyclical negation ∼ A),

4In most contexts, the value of
a

b
can be safely set to be infinity, but if say a = 0, then clearly

a

b
is indeterminate.
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three-valued conjunction ∨, weak modularity, and the law of contraposition for diametrical negation

and alternative implication (A → B) ⇔ (−B → −A). For more details on how these trivalent logical

operations are defined, the interested reader can refer either to page 151 of Reichenbach’s textbook

[11] or to Kamlah’s paper [33]. Once these axioms are introduced, the set of measurement proposi-

tions becomes an orthomodular lattice in the natural way—if A→ B is read as the lattice theoretical

implication. Reichenbach’s logic is an analytical theory, which may be derived from the non-classical

semantic conventions for its operations. It differs from Boolean logic only in how it accounts for propo-

sitions pertaining to incompatible observables, which are deemed meaningful under certain empirical

conditions and undefined under others.

In the usual Hilbert space picture of quantum mechanics, a statement is considered indeterminate

whenever it concerns a property for which the state in question is not one of its eigenstates. Although

this may seem to render indeterminate statements about observables in a very large class of practical

measurement situations, Putnam [36] explains that indeterminate refers only to statements that are

neither accepted nor rejected at the present time. He insists that truth value of any logical statement

is necessarily an epistemic predicate, which means that it is always relative to evidence at a particular

time. Upon verification or falsification, an indeterminate claim goes from a ‘state of limbo’ into being

true or false. This is the case even for incompatible observables because the process of verification will

operationally lead to a determination of one of the two non-commuting variables. There is no need to

worry about simultaneous measurements of properties like position and momentum because they are

not observed empirically. Hence, Putnam insists in the empirical nature of logic in this precise manner.

6.2 Putnam’s realism

Kochen and Specker’s original proof about contextuality was based on taking at face value the way

quantum mechanics appears to represent the functional relationships among magnitudes. Quantum

logicians believe that treating propositions associated with the same subspace as equivalent is the most

natural way of understanding quantum theory. In discussions on quantum logic in Redhead’s book

[24], he is explicitly concerned with a variety of realism according to which every magnitude has a

value in every state (which Stairs called value-definiteness), essentially the kind of realism espoused by

Einstein.

Quite independent of his remarks about Reichenbach’s trivalent logic, or any manifestation of quan-

tum logic for that matter, Putnam takes into consideration this ‘value-definiteness criterion’ of reality

and establishes how quantum logic should be properly interpreted realistically. His position is succinctly

expressed in the following proportion, what he called the ‘heart of quantum logical interpretation [37]’:

Geometry : Relativity = Logic : Quantum Mechanics. (39)

Putnam justifies this by commenting on how, for instance, relativity can in principle be expressed

in pure Euclidean geometric terms. He says,“one can stick to Euclidean geometry provided one is

willing to pay a price, the acceptance of causal anomalies—mysterious forces, instantaneous actions at

a distance, and so on.” In an analogous manner, advocates of quantum logic will assert that classical

logic is equally valid for physics provided one is willing to accept certain paradoxes—for example, the

Heisenberg cut between the quantum system and the classical measuring apparatus.

A prominent feature of Putnam’s realist picture of quantum logic is the belief that the meaning

of the logic itself is decided empirically, as opposed to being fully determined by formal relationships

between the sets used to represent the propositions. Part of the quantum logical view is that it is

a factual, synthetic, empirical matter of deciding which physical situations are describable by the
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implication defined on the projection lattice P(H).

In this version of realism, the overall world-view considers physical processes to involve interactions

between particles. Each of these particles have a momentum or position but one must not conclude

that each of these particles has a position and momentum simultaneously. This is an instance of the

distributive law and is one which fails to hold in quantum logic. A system has many possible state

vectors; by right, it has a state vector for each non-degenerate physical observable. However, it is

impossible to assign more than one state vector to any system. A physical system consisting of a single

particle has a position and it has a momentum. But if the position is known, the momentum can

not be determined, and vice-versa, because of the quantum indeterminism that applies to this pair of

properties. In this case, only the property whose value is known between any non-commuting pair of

observables can be assigned to the system. It must be emphasized that the logic itself does not exactly

say how a particular determination of position renders the momentum uncertain.

A quantum logical proposition corresponding to a state vector in Hilbert space is to be understood

as representing the logically strongest consistent statement about the system property of interest. To

add any other information to such a statement leads either to redundancies or contradictions. For

example in classical physics, points of phase space correspond to the logically strongest consistent

statements. No extra knowledge about the state is gained by specifying any other kind of information.

Here is a summary of some of the key features of a realist quantum logical view of the world

according to Putnam:

(a) Measurement only determines what is already the case; it does not bring to existence the value

of the observable measured.

(b) Complementarity is fully retained. The failure of distributivity prohibits the simultaneous ex-

istence of certain physical situations but it does not prohibit the determination of objective

properties through measurement.

(c) The rules of quantum mechanics can not be supplemented by dynamical laws of the traditional

Hamiltonian or Lagrangian kind. The reason is such equations of motion naturally lead to a

notion of classical-type phase space for physical states but simultaneous position and momentum

values are not allowed by quantum theory.

(d) Probability enters in quantum theory like in classical physics: through consideration of large

ensembles of identically prepared systems.

(e) Hilbert spaces in quantum mechanics simply represent various ‘logical’ spaces; namely, the lattices

of experimental propositions relevant to the physical system studied. The lattice structure is a

partial Boolean algebra. It is not isomorphic to any Boolean lattice but it can be isomorphic to

the lattice of subspaces of a suitable linear space (additional assumptions are necessary to recover

the projection lattice P(H) exactly.)

6.3 Modest quantum logic

Putnam’s version of quantum logic calls for a traditional kind of realism, one where Einstein’s sufficient

condition for reality implies the pre-existence of the value of the physical property being measured.

However, Stairs noted that the condition that “all physical observables have classically definite values

may impose restrictions on the class of allowable structures in the theory in a way that has nothing to

do with realism [25].” It may be possible that if the physical magnitudes obey a non-classical logical

structure, they can be made compatible with realism without violating locality, even if value-definiteness

of observables is not imposed.
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Demopoulos reminds us of an important distinction to be made between correspondence with the

truth and coherence among different truths. The minimal condition for truth consists of the correspon-

dence between a proposition and an independent state of affairs. One might hold that a proposition Q

is true only if there is an assignment of truth values to all true propositions under which q is assigned

the value ‘true’. But such a constraint makes the truth of a particular proposition coherent with other

propositions. Classically, there will always be a truth functional that assigns all true propositions the

value ‘true’ but what Demopoulos claims is that the logic of quantum theory is telling us that this is an

inessential feature of truth [35]. A realist should be committed to correspondence, and not necessarily

coherence. It is a mistake to think that coherence is a sufficient condition for truth, although it is also

unclear one should deny that coherence with other truths is a necessary condition for truth. To this

the quantum logician might respond that even if coherence turns out to be necessary for truth, it must

be a quantum logical kind of coherence which one must understand.

A well-known implication of quantum logic is that compound propositions involving the standard

logical connectives do not necessarily acquire their truth value from the truth value of their more

elementary constituents, i.e. the logic is not truth-functional. This is just another way of saying

that the relations of equivalence, inclusion, exclusion, etc. among the possibilities open to quantum

systems have a characteristic non-Boolean structure. In this light, Stairs proposed a more modest

form of quantum logic where logical relations are understood in terms of truth values rather than

say experimental questions or measurement results. He calls it modest quantum logic, contrasting it

with Putnam’s strong realist version, and its distinguishing feature is that it does not include value-

definiteness as a necessary component of realism. Modest quantum logic offers a theoretical framework

that provides the same advantages as that of a stochastic hidden variable theory but without introducing

the hidden variables themselves [25].

Some key distinctions between Putnam’s strong realist and Stairs’ modest quantum logic:

(a) Measurement: In modest quantum logic, pre-measurement values are indefinite. This gives a

special role to measurement. This might sound like the unresolved measurement problem or rather

a solution to the problem by introduction of an ad hoc process. But there is a difference between

postulating something for which one has no convincing explanation and postulating something

without any convincing reason. Measurement and its projection postulate is really the former

kind and hence is not as big of a problem as people make it out to be, especially if we believe

there is a more fundamental structure to the quantum theoretical formalism.

(b) Probabilities: In Putnam’s realism, probabilities are epistemic—they result from degrees of

belief and correct assignment of probabilities require rational, coherent assignments specified by

quantum theory. In Stairs’ modest version, probabilities are physical—they represent propensities

or dispositions for various outcomes to be realized on an ideal measurement. (Ideal just means

that when a certain property is already true for the system then it must yield that outcome

exactly, e.g. it is in an eigenstate of some observable.)

(c) Luder’s rule: In strong quantum logic, Luder’s rule represents a probability conditionalization

upon acquisition of new information. In modest quantum logic, it is the same sort of condi-

tionalization but any form of knowledge acquisition is denied. What one says is that a certain

possibility has been realized and therefore the disposition or propensities get conditioned upon

this realization.

(d) Contextuality: Both versions of quantum logic avoid contextualism but from slightly different

interpretational perspectives, which is not too important to distinguish here.

(e) Meta-language: Q ∨ R is true does not necessarily imply Q is true or R is true—this is just

one of the ways in which the meta-language does not work in the usual classical sense. The
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course of actual events is constrained in a non-trivial way by what is possible. Stairs’ logic is

not the same as Copenhagen interpretation: systems that are in the eigenstate of a magnitude

or with indefinite magnitude (which is equivalent to the proposition Q ∨ R) are considered real,

independent of measurement.

6.4 Finkelstein’s empirical logic

Starting with the primitive notion of a test or quantum operation, Foulis and Randall formulated

the formal scheme of empirical quantum logic, where test spaces are the key mathematical objects.

Finkelstein shares much the operationalist mindset in his own formulation of quantum logic [3], but

he uses a slightly different but almost synonymous language of effectors (input from the system) and

receptors (output from the measuring device)—where tests are considred to be filtration or transmission

processes acting on the state of the system. The major difference between Foulis-Randall-Piron and

Finkelstein is that while the former attach a realist interpretation to their framework, the latter insists

on a purely empiricist reading. In fact, Finkelstein’s position appears to be not just instrumentalist but

also strongly anti-realist when he said, “ quantum theory denies the existence of an absolute reality

[38]”. Furthermore, the Foulis-Randall-Piron scheme has questions and propositions which strictly

speaking have separate but isomorphic algebraic structures. In the case of Finkelstein, he only has the

lattice of experimental tests. He makes use of terms like properties and states to make connections with

the standard language of quantum theory but points out that these are derived notions from outcomes

of certain operations. Since the realist operational scheme has already been covered in some detail in

the last section, our discussion here will concentrate on Finkelstein’s version of empirical logic.

Finkelstein’s operational approach tries to present the principles of classical and quantum logic in a

unified framework using the appropriate operational notions of properties and states. His operational

theory expresses experimental situations in the language of complex matrix algebra. Properties are

determined by performing experiments, which involve filtrations (measurements) or transmissions (re-

versible dynamics). States are defined in terms of ensembles of identical preparations. The classical

states has an absolute sense but a quantum one has states relative only to an operational frame.

In the standard prototype classical experiment of a coin with heads and tails (fig. (3) shows its

classical phase space), all matrices for filtrations F and transmissions T are binary. In general, for

classical systems that are completely known (at least those that are not mixtures of different classical

states) filtrations are matrices with a single 1 in the diagonal and zeroes elsewhere (diagonal projectors),

while transmissions are permutation matrices, and states are filtrations with unit trace. All filtrations

commute–the classical algebra of classes is commutative. One may call a vector a state vector whenever

the projection operator corresponding to the vector is a state in this language. It also possible to define

a classical principle in this language: any two state vectors for a classical system are orthogonal or

parallel. The states and operations are described in the same matrix algebra but the states generate a

distinguished commutative subalgebra as a result of the classical principle.

The main change in quantum theory is the quantum principle: every non-zero vector is a state

vector. In the quantum case, the filtrations need not be binary matrices but may have any complex

number as long as F is a projection matrix while transmissions refer to any unitary matrix. States

are still filtrations with unit trace. However, the filtrations no longer commute and no longer make

a natural Boolean algebra. Finkelstein reminds us that state vectors in this formalism represent our

actions or the ensemble our actions produce or accept, not a list of properties that specify the system.

In quantum physics, different states need not exclude each other. Instead one introduces a quantum

frame, a set of states {Ψn} that sum to identity. These are actions that are available to an experimenter

as long as the states commute. Each frame {Ψn} has its state variable S =
∑
nΨn. According
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to Finkelstein, S defines a multichannel analysis that always outputs one of the frame states. He

is basically just describing what a positive-operator valued measurement (POVM) would be in his

empirical scheme. Furthermore, a physical observable V is defined by a spectral resolution {Pn}
(that is, involving a set of orthogonal projectors) of the identity and the assignment of a value of the

observable to each projector in the family. The observable is mathematically expressed by a normal

operator V =
∑
vnPn, which is just the spectral decomposition of the hermitian operator associated

with V .

Finkelstein’s theory is a version of empirical logic because statements about states and properties

of the system include only logical propositions one can make from experiments or tests for which there

is a well-defined procedure, either a filtration or transmission process in his language. The state vector

has no ontic status; in fact, he has a definite sense in saying that the state vector has no physical

reality: asking “what is the state vector?” is not an admissible question about properties of a system.

However, it is a legitimate question to ask,“is the quantum system in the state ψ?” since the logical

framework allows for an answer to such a question. Thus, the state vector must be regarded as a

syntactical element employed in describing possible physical properties of a system.

6.5 Dialogic approach

It has been so far that interpreting quantum logic in physical terms involves providing a suitable physical

interpretation for the possible logical propositions of the system, whether the primitive notions of the

logic take properties or tests as the fundamental concept. In all the quantum logical interpretations

discussed in this section, it has been implicitly assumed that the algebraic structure of propositions

correspond to a lattice Lq of Hilbert subspaces, where the subspaces can be thought of as analogous

to subsets of phase space in the classical Boolean lattice. The similarity between the set-theoretic

operations and the logical operations allows us to interpret the lattice of subspaces as a propositional

calculus, referred to as the quantum logic. However, propositional logics do not exclusively derive their

meaning via set-theoretic ideas. Mittelstaedt [39] provides us with an elegant example of operational

semantics that interprets a lattice as a logical calculus that is also suitable for quantum mechanics.

In the lattice theory of partially ordered sets, there are many kinds of lattices that lead to various

propositional calculi. A Boolean lattire LB of propositions corresponds to the calculus of classical logic

and an implicative lattice Li leads to a model for Brouwer’s intuitionistic logic, which is primarily

characterized by its rejection of the law of excluded middle. (Roughly speaking, the law of excluded

middle states that either A or ¬A must true. Brouwer argues that such is not necessarily the case in

for statements involving infinite collections.)

The important question is regarding the semantic interpretation of Lq. For the Boolean lattice LB ,

it is easy to interpret using a two-valued truth function that assigns ‘true’ or ‘false’ to propositions.

It has been shown by Gleason, Kamber, Kochen and Specker that neither a two-valued function nor a

generalized truth function of any sort does exist on the lattice Lq. In the so-called intuitionistic logic,

the lattice Li can’t be interpreted by truth values. However, an implicative lattice can be considered

as a logical calculus if one uses the more general, operational method called the dialogic approach.

A generalization of the dialogic method can be used to interpret a lattice Leq which is isomorphic

to Lq if one adds to its axioms tertium non datur, the law of excluded middle. The aforementioned

modification of the operational dialogic method has to do with the treatment of incommensurable

quantum mechanical propositions, and the modified propositional calculus shall be called ‘effective

quantum logic’.

In a dialogic approach [40] developed by Giles, Stachow, and Mittelstaedt, one employs game-

theoretic notions for two competing parties, which are referred to as the verifier and the falsifier. These

28



Alice Bob

1. b→ (a→ b) 1. proof of b; why a→ b?
2. a→ b 2. proof of a; why b?
3. b

Table 1: An illustration of the dialogic approach to logic. Propositions are questioned and defended in a conver-
sation between verifier (Alice) and falsifier (Bob). The truth value of any initial claim is reduced to the truth value
of an elementary proposition.

two parties engage in back-and-forth exchange of questioning and proof until the conversation is reduced

to determining the truth value of an elementary proposition E, in which case the verifier ‘wins’ if E is

true, while the falsifier ‘wins’ if E is false. Table (1) illustrates by an example how this interplay works

between verifier Alice and falsifier Bob. In this example, Alice starts the dialogue with the proposition

b→ (a→ b), which she claims to be true. Bob’s move is prove that b is true and challenge Alice why

this must imply a → b. Alice must then give a proof that a → b is true. Bob goes on to show a is

true and then ask Alice why this must imply b. Alice finishes off the dialogue by trying to prove b,

which if she is successful means she wins the argument. Thus, the dialogic method is characterized by

such exchanges and decides the truth value of a proposition depending on whether the verifier (true)

or falsifier (false) wins. In this particular example, note that Alice does not in fact have to do the last

step; she can simply refer to Bob’s proof of b in his step (1) to win this dialogue.

Pretty much the same sort of dialogue can be made for the dialogic proof of quantum mechanical

propositions. However, the key difference is that in the defense of a proposition, the verifier is not

allowed to cite a previously proven proposition by his opponent whenever the compound statement

it belongs to involves an incommensurable propositions. Going back to table (1), if a and b were

propositions about position and momentum, respectively, Alice would not be allowed to use Bob’s

proof of (b) to win the argument.

To incorporate such a rule, one has to define precisely what it means for a, b to be commensurable:

two propositions a, b are commensurable if the corresponding observables can be measured in an arbi-

trary sequence on the system of interest without thereby influencing the result of the measurement. In

this case, a, b are always commensurable whenever either a ≤ b or b ≤ a is valid. It can also be shown

that statements involving a and ¬a or a→ b are always commensurable independent of b.

The additional restrictions have the consequence that not all classically dialogically provable im-

plications can still be defended successfully in dialog. Propositions which remain defensible after the

inclusion of the commensurability condition will be denoted as quantum-dialogically provable, and any

statement which are provable quantum dialogically independent of semantic content.

The calculus of effective quantum logic Qeff can be presented as a system of rules with the aid of

which all possible quantum logical propositions can be derived from implications of combinations of

a few statements. The calculus Qeff is consistent and complete with respect to the class of quantum

dialogically provable implications, so that it is isomorphic to the full quantum logic Q of the lattice Lq

of Hilbert subspaces when one incorporates into the logical calculus truth values for the propositions (so

far we have only discussed the formal syntax of statements with no reference to truth value assignments)

and one adds to the rules the implication

1 ≤ a ∨ ¬a, (40)

which is just a statement of tertium non datur. It is important to note that the weaker assumption of

decidable truth values for every proposition must not be confused with the much stronger postulate of

the existence of a two-valued truth function that determines what the truth value is. In fact, it has
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already been shown that such two-valued function does not exist for quantum mechanical propositions

and this has been the may obstacle to the interpretation of Lq as a logical calculus.

The propositional calculus Q of quantum theory was first expressed in terms of a lattice by Birkhoff

and von Neumann, and later developments have attempted to reproduce the lattice structure from an

axiomatic system that does not assume Hilbert spaces. However, proponents of the dialog method

show us that for the lattice-theoretic characterization of Q it is more appropriate to first reformulate

the propositional rules in terms of an effective quantum logic Qeff which has a more convenient but

equivalent set of rules. This shows that the lattice of quantum mechanical propositions is really an

orthocomplemented quasi-implicative lattice Lqi, characterized by a set of axioms that leads to quasi-

modularity for the lattice. By postulating the law of excluded middle, one finally arrives at the lattice

isomorphic to Lq, which is just the projection lattice P(H).

7 Evaluating quantum logic

Quantum logical interpretations of quantum mechanics have always been driven by physical situations

that do not admit a simple classical explanation. The aim of quantum logic is to establish the correct

logical structure of the theory such that the algebraic framework dictates the proper reading of the

details of paradoxical experiments, whether it refers to truth values, physical properties (propositions

of the system), or measurement outcomes (quantum events).

Reichenbach was mainly concerned with the interpretation of the unobservables of quantum mechan-

ics. Unsatisfied with Bohr’s dismissal of propositions about incompatible observables as meaningless,

he introduced a third truth value called indeterminate. According to Feyerabend, the trivalent logic

effectively involves the classical principle of value-definiteness, that is, a physical property always car-

ries a particular value independent of observation. He criticizes Reichenbach’s logic because it suggests

that quantum laws do not uniformly apply to observable and unobservable situations. Of course, this

is somewhat a weak argument since the theory does explicitly distinguish between commuting and non-

commuting observables, so at least there is a physically motivated reason for treating them differently.

However, Feyerabend makes a valid point when he says that Reichenbach is forced into his logic mainly

because he treats value-definiteness as a necessary feature of quantum theory, when it fact it is only

required if one sticks to a classical realist picture of the world. Furthermore, our lessons from Bell,

Kochen and Specker already tell us that there are major difficulties when trying to interpret certain

quantum situations classically. In trivalent logic every statement expressing an anomaly must have an

indeterminate truth-value. In general, every quantum mechanical statement simultaneously involving

complementary variables can only possess indeterminate truth-values, which isn’t exactly more enticing

than Bohr’s suggestion that they be considered meaningless.

Reichenbach [11] provided several specific arguments in support of his three-valued logic, which are

refuted accordingly:

(a) It should not be the case that statements are meaningful only if observations are made to verify

them.

Refutation: While it is true that classical properties can only be assigned to a system when

particular conditions are fulfilled, these conditions doesn’t necessitate an observer. Classically, it

is sufficient to determine a set of constraints that a system adheres to that naturally localizes its

‘state’ inside some region of classical phase-space, as small as desired.

(b) Reichenbach claims that if it meaningless to ask which slit a photon passes through in a double

slit experiment if one doesn’t look, then it is equally meaningless to say that it passed through

one of the slits.
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Refutation: This is obviously false since when we see an interference pattern on the screen, it is

still legitimate to say that the photons passed through the slits and not through the walls. What

is unclear is how it exactly goes through the slits, precisely whether they go to one or the other

slit or if they somehow split and pass through both slits.

(c) Reichenbach says that in his interpretation, all statements are true or false, never indeterminate.

Refutation: This is a puzzling claim since it is pretty obvious that statements about complemen-

tary variables such as position and momentum of a single system seems inevitably indeterminate in

his logical scheme. (In fairness to Reichenbach, he might have only meant that statements about

incompatible observables will still be meaningful but will neither be true nor false. Nonetheless,

it still seems an ad hoc modification that just artificially gives meaning to Bohr’s meaningless

statements without providing any understanding of how incompatible propositions correspond to

reality.)

Reichenbach’s version of quantum mechanics is partly based upon the projection postulate, which

states a reduction of the wave packet of the Schrodinger equation upon measurement. Such discon-

tinuous, unpredictable transformation of the state vector describes a peculiar sort of interaction which

is not governed by all other dynamics processes associated with unitary transformations. However,

projection is something that an experimenter chooses to do, and should therefore not be expected to

have a counterpart in the dynamical equation of motion of quantum systems.

One may think of measurement without the post-selection, so that there is no projection collapse

but this is still not a general measurement description. In fact, the mixing effect of a measurement

without post-selection is derivable special case of basic postulates in quantum theory. If one assumes

that the state at a time t2 > t1 is uniquely determined by t2 − t1, then it is possible to show, with

linearity and continuity assumptions that there is an operator H such that for pure states

ψ(t2) = e−i(t2−t1)Hψ(t1) (41)

so that the evolution depends only on the time difference. This is a reasonable assumption for an

isolated system but not really for an open one. Measurements do not conflict with the Schrodinger

equation because they do not satisfy the conditions in which it applies—there is no corresponding

Hamiltonian for the transformation it describes.

For Reichenbach’s theory, he requires the uncertainty principle to forbid simultaneous measurements

of incompatible observables. However, Park, Margenau, and Ballentine have all argued correctly that

interpreting uncertainty relations involves measurements of ensembles of identically prepared systems

and not the precision of single measurements (which is what Heisenberg seemed to believe in, especially

with his electron microscope example).

Another problem with Reichenbach’s logic is his unsatisfactory attempt to reconcile three-valued

logic with the dichotomy of truth values at the macroscopic level, where he invokes the ignorance

interpretation of mixtures to argue that macroscopic states are really in some pure state but we just

don’t which one among the mixture. Of course this doesn’t work because a quantum mixture has no

unique pure-state decomposition.

Our rebuke has so far been directed exclusively at Reichenbach’s logic but there are also some

critical remarks to be said about the other quantum logical interpretations. In the case of Putnam’s

realism, the problem is how to reconcile the realist view of properties and the quantum logical structure.

Michael Dummett [43] argued that for Putnam’s realism to work, he requires distributivity to hold.

The argument has to do with how the traditional brand of realism (that is, in the sense of Einstein) is

often associated with bivalent true values—its corresponding logic contains propositions that are either
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true or false. Without Boolean logic, it is unclear how Putnam intends to make his realist version

to work, since distributivity is known to fail in quantum theory. Hence, Putnam cannot embrace his

brand of realism without embracing classical logic, which makes his endorsement of a realist quantum

logic a hopeless cause. It is worth noting that Putnam has long since backed away from this point of

view [24]; in particular, he no longer thinks that the principle of value-definiteness, a distinguishing

feature of classical realism in attributing physical properties to a system, is necessary for realism.

With regard to Piron’s question-proposition system, several deficiencies were pointed out by Had-

jisavvas and Thieffine in a couple of papers [44, 45] published in the early 1980s. In particular, they

questioned the validity of one of the axioms asserting the existence of any ‘product’ proposition a ∧ b,
which they argue is semantically undefinable. They pose a challenge for Piron’s axioms by asking how

it would explain a series of experiments that involve the product proposition. If their contention holds,

it brings into question the relevance of the system as a syntactical scheme.

Foulis and Randall [46] come in defense of Piron’s axioms, pointing out that Hadjisavvas and

Thieffine are confused about the semantics because they fail to distinguish between properties of a

physical system and operationally testable propositions about the system. Each pair of questions

{x,¬x} corresponds to a physical operation. The equivalence class of questions [x] corresponds to an

assertion about the state of the system that does not necessarily admit to an operational test. The class

[x] is regarded as a property of the system which is accessible for some tests x such that securing x or

¬x tells you that the value of the property [x]. If one prefers, x corresponds to an operationally testable

proposition while [x] is the set of propositions (not all necessarily testable) that give the same value to

the property of the system in question. Recall that in standard quantum mechanics, it is presumed,

modulo superselection rules, that for every projection operator E, the pair {E, 1−E} corresponds to a

physical operation or experiment. These sets of experimental tests for propositions of the system that

make the connection to projection lattice P(H).

On a somewhat related note, Bub and Demopoulos [26] argue that Finkelstein’s “operational logic”

on a ‘lattice of experimental tests’ is a position excluded by the Kochen-Specker theorem although it is a

bit unclear how this is so. However, note that Piron’s axiomatic framework is different from Finkelstein’s

operational model because the former considers both questions and propositions as necessary elements

of the logic, whereas the latter regards tests as entirely sufficient. This is a significant distinction

because if Bub and Demopoulos are indeed correct, it shows that not only does one have to distinguish

between properties and tests to check the value of those properties, one in fact needs both lattice

structures for a complete logico-algebraic description of quantum mechanics. To deny the relevance

of one or the other leads to some inconsistency with how certain physical scenarios (especially those

involving incompatible observables) have to be interpreted. There are, however, contrary opinions to

this matter; in particular, Hughes points out how all the various quantum logical approaches converge

to the same formal structures—a partial Boolean algebra that makes the logic of property ascription

to quantum systems inevitably nonclassical. He maintains that perhaps this suggests that the issue is

not whether any of these interpretations is correct. Rather “it is (a choice) between adopting a deviant

logic and eschewing the notion of a property [13].” Maybe it is more appropriate to consider quantum

logic as, in Bub’s terms, “a non-Boolean possibility structure for quantum events”. Of course, as of

now, this whole business of how quantum logic works best, is a completely undecided matter.

8 Concluding remarks

In standard quantum mechanics, there are several experimental scenarios that call into question how

states or properties of systems should be interpreted in a quantum mechanical context. The big
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problem is that classical intuition no longer applies; in fact, to insist on a completely classical logic for

experimental propositions leads to anomalies or inconsistencies, especially for situations that involve

simultaneous measurements of non-commuting physical magnitudes. Bohr offered a simple solution:

since knowing say the position and momentum of a quantum system precisely at the same time is

excluded by Heisenberg indeterminism, then one should consider such statements as meaningless. Often

called the Copenhagen interpretation, it provides a way of thinking about quantum theory that is

good enough for making sense of most practical experiments in quantum mechanics. However, the

interpretation leaves much to be desired because of the uncanny success of quantum mechanics as

a fundamental theory of nature. How can a theory that works so impressively leave some physical

situations unexplained?

Quantum logic is an attempt to bridge the gap in understanding quantum theory, and formally

establish the connection between what is observed when measuring quantum systems and the states

and properties that can be correctly attributed to such systems. Quantum logic tries to achieve this by

looking at the logical and algebraic structure of the theory and examining how the syntax of the logic

translates into physically meaningful statements. The algebraic structure has been known for a long

time, ever since the work of Birkhoff and von Neumann showed that the quantum propositions form a

lattice of closed linear subspaces of Hilbert space. Part of the aims of quantum logical approaches is

to show how to reconstruct this lattice from an appropriate set of axioms, without having to postulate

that the structure involves Hilbert spaces—giving us the formulations of Mackey, Jauch, Piron, Foulis,

Randall, among others.

Probably more important than rediscovering the algebraic structure of quantum theory is the delin-

eation of a self-consistent picture of the quantum world that explains complementarity and entangle-

ment, without invoking ‘unphysical’ effects such as “spooky actions at a distance” or smudged particles

that ‘collapse’ with measurement. Reichenbach’s trivalent logic proposes that the nonclassical lattice

structure of quantum mechanical propositions more naturally admits a three-valued truth functional

system such that Bohr’s meaningless statements (merely) become indeterminate ones. He was obvi-

ously motivated more by a dissatisfaction with the Copenhagen position than with reproducing the

projection lattice of Birkhoff and von Neumann. Despite the elegant semantics of his logic, there are

major difficulties in making it consistent with the classical Boolean logic of commuting observables or

effectively macroscopic systems. In particular, it seems that he had no satisfactory way of explaining

even the most obvious paradoxes in quantum mechanics.

Putnam’s realism embodies the original aim of quantum logic: to reinstate a sort of classical picture

of reality by modifying the logical system one uses for evaluating quantum propositions. The main

issue is how to reconcile the idea of pre-existing values for properties with quantum mechanical situ-

ations that seem to deny this. Proponents of a realist quantum logic have long since abandoned the

necessity of definite values for properties in this Einsteinian sense. Such a formal scheme was given

by the collaboration among Foulis, Randall and Piron, that drew the attention of quantum logicians

to two important lessons: (1) distinguishing between the logical structure L provided by the partially

ordered set of subspaces and the lattice structure L of properties or tests or outcomes and (2) the

possibility of considering a logical framework that takes quantum events (i.e., experimental tests and

their corresponding outcomes) as the primitive notions as opposed to physical properties of a system.

The former is an extremely important distinction, because although in classical and quantum mechan-

ics there is a canonical order-preserving mapping L 7→ L which is an isomorphism, in general, their

structures are different. Such differences are crucial when one is trying to reconstruct quantum theory

from an axiomatic framework of properties and operations. In the latter case, it has opened up a

variety of research programs that explore test spaces and outcome spaces for quantum experiments,

leading to many important algebraic results of particular value to modern mathematics. The hope is
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that the continued study of generalized orthoalgebraic structures will eventually lead to some progress

in quantum foundational interpretations as well. The theory of test spaces is important because it drew

into attention the obsession of earlier quantum logicians in coming up with an interpretation wherein

elements of the logical structure represent physical properties. Perhaps the reason why quantum logic

approaches haven’t made much headway is because of the insistence on the concept of property at-

tached to a physical system. Maybe the correct way to go is to consider outcomes of experimental tests,

which leads to the consideration of quantum events. This is partially embodied in recent programs in

quantum foundations such as the convex set framework (where convex set are primitive notions) or

modal interpretations of quantum theory (where quantum events are the basic elements).

Despite all the wonderful results since the time of von Neumann, there is one lingering criticism

of the entire quantum logical enterprise: it is not clear how much it has actually contributed to our

understanding of how quantum theory works at a fundamental level. It seems that looking at the

underlying logical structure hasn’t really enlightened us on how to properly think about states and

properties of system. Despite all the mathematical rigor, even the most fundamental quantum logical

results are not really transparent to a non-expert. A large part of it is related to the fact that people

take it for granted that classical logic isn’t the only logical way to think and reason. Quantum logic

does give us an appreciation for how part of the confusion with incompatible observables lies in the

fact that our intuition tries to process a nonclassical logical situation with ordinary Boolean logic. A

better understanding of the algebraic structure of the theory demands a strong training for non-classical

logical thinking, but it doesn’t help the cause that it is totally unclear what quantum logic buys you,

which is important since the training in logic and advanced mathematics it seems to require is quite a

hefty price to pay. Then again, since many foundational issues quantum theory remain unresolved, it

is worth pursuing all available avenues of research.

One of the early promises of quantum logic is a consistent realist picture of nature. It now seems

that this is no longer available to us, at least not a classical sort of realism where properties always

carry values (which is arguably the most desirable sort). It seems to me that anyone who adheres

to a quantum logical understanding of quantum mechanics would have to be an empiricist for the

most part. In order to justify the assumption of the primacy of a lattice of experimental tests for

physical properties of a system, one must argue that the correct starting point for developing a physical

theory is to talk only about things that are potentially observable. It seems that to make a stronger

realist claim that what one observes exists beforehand, it is necessary to assert that the projection

lattice defines some restrictions on valid experimental propositions of a system, basically regarding

the associated propositional calculus as tantamount to a natural law. That is a very strong and

highly controversial claim albeit one that is still within the realm of possibility. Note, however, that

the operational framework that quantum logic provides retains its value for the algebraic analysis of

quantum mechanics, even if no suitable interpretation can be attached to the underlying logic. Perhaps

quantum logic is just that, a means to understand the algebraic non-Boolean structures of quantum

mechanics in a hope that this extra information will lead to a conclusive, cohesive interpretation of

quantum theory.
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