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Measurements performed in solar neutrino experiments in the 1960s and atmospheric neutrino
experiments in the 1980s exhibited a deficit in the flux of neutrinos when compared to the predictions
of the Standard Model. To explain this unexpected ‘disappearance’ of momentum and energy,
neutrinos were hypothesized to transition between flavors in a mixing process known as neutrino
oscillations, which was first proposed by Bruno Pontecorvo in 1957 as a distinct possibility for
massive neutrinos. We discuss a few phenomenological models that fit known observational and
experimental data and attempt to explain neutrino masses and flavor mixing. In particular, they
generally provide bounds on the primary oscillation parameters—the mixing angles and the squared
mass differences—in the context of various mass-generating mechanisms for neutrinos. In this
project, we provide a basic overview of the theory of neutrino mass and neutrino oscillations. We
also present some of the existing observational evidence from solar and atmospheric neutrinos as
well as the experimental results from reactor and accelerator laboratory searches.

I. INTRODUCTION

In 1911, Lisa Meitner and Otto Hahn observed in beta
decay experiments that the energies of the emitted elec-
trons exhibited a continuous spectrum, confirmed in later
experiments by Charles Drummond Ellis and colleagues
in the 1920s. To reconcile these experimental observa-
tions with energy conservation, Wolfgang Pauli suggested
a third unobserved particle in the decay process: a neu-
trino. For this purpose, the neutrino should carry no
electric charge and have virtually no interactions with
matter. Pauli himself pointed out that its mass should
be no larger than 1 percent of the proton mass—the ear-
liest known limit to neutrino mass. Thus, in standard ra-
dioactive decay, nuclei mutate to a different species when
neutrons transform into protons according to

n→ p+ e+ νe. (1)

The energy range for the emitted electron corresponded
perfectly to the various ways energy can be distributed
in a radioactive decay into a three-particle final state.
In 1956, Fred Reines and Clyde Cowan Jr. first directly
observed neutrinos produced by a nuclear reactor [1], a
discovery that was awarded the Nobel Prize in 1995. The
muon neutrino νµ was discovered in 1962 by Leon Le-
derman, Melvin Schwartz and Jack Steinberger (Nobel
Prize, 1988) and the tau neutrino ντ almost forty years
later in 2000 by the DONUT Collaboration at Fermilab
in an experiment built specifically to detect it.

To explain Pauli’s neutrino hypothesis, Enrico Fermi
developed a theory of beta decay [2] in terms of the
weakly interacting fields of a neutron, proton, electron
and antineutrino. If we denote the fermion fields by ψj
for j = n, p, e, n̄e then Fermi’s interaction Hamiltonian
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density can be written as

Hweak =
GF√

2
ψpγµψnψeγ

µψνe (2)

where GF is the Fermi coupling constant. The Hamilto-
nian in low-energy weak decays essentially retains the
form as Fermi’s interaction except for some modifica-
tions: (i) fundamental fields for proton and neutron are
now in terms of quarks, (ii) before electroweak theory,
Robert Marshak and George Sudarshan, and Richard
Feynman and Murray Gell-Mann determined the correct
V -A form for the currents, and (iii) weak interactions
include both charged current (W±) and neutral current
(Z0) interactions. Although Fermi’s theory of weak in-
teractions matches well with tree Feynman diagram cal-
culations, it fails with loop calculations as the theory is
not renormalizable in four dimensions–it requires modi-
fications that were introduced later in electroweak the-
ory, first discovered in the 1960 when Sheldon Glashow
extended electroweak unification models due to Julian
Schwinger by including a short range neutral current
Z0, and improved upon by Mohammad Abdus Salam
and Steven Weinberg when they incorporated the Higgs
mechanism.

For the most part, we know that the Standard Model
provides a remarkable picture of the vast array of phe-
nomena in particle physics, with the exception of gravi-
tational effects. It is the most general theory consistent
with general physical principles like Lorentz invariance
and unitarity plus two assumptions: (i) renormalizability
and (ii) observed particle content, all of which have been
observed experimentally or has indirect experimental ev-
idence (gluons, quarks) save for the yet-unseen Higgs bo-
son.

There is however one phenomenon where it is clear that
the Standard Model fails: explaining the phenomenon of
neutrino oscillations. The Standard Model asserts sep-
arate conservation laws for the three lepton numbers
Le, Lµ and Lτ . Even taking into account electroweak
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anomaly suggests quantities like Le − Lµ or Lµ − Lτ
should be exactly conserved. Consequently, the theory
predicts stable, massless neutrinos where charged current
weak interactions only involve specific pairs (ν`, `

−).
In 1957, Bruno Pontecorvo realized that non-zero neu-

trino masses imply the possibility of neutrinos oscillating
from one flavor to another [3]. He proposed that the
neutrino state produced in weak interactions is a super-
position of states of two Majorana neutrinos with definite
mass. Such a phenomenon is familiar in the quark sector
of the Standard Model, where we have neutral kaon mix-
ing. At the time, only the electron neutrino was known
so this hypothesis of neutrino mixing was highly specu-
lative.

The problem of searching for neutrino mass and study-
ing the oscillation phenomenon has been faced in the past
through many different experimental techniques. The
first studies, based on the Fermi-Perrin method [4] of ob-
serving near the end point of the β-spectrum, obtained
the limit mν = 500 MeV [5], later improved in the 1950s
to mν . 250 MeV. Therefore, it became evident that if
neutrinos had any mass at all, it would be lighter than
an electron. After the discovery of parity violation in
β-decay, proponents of the two-component spinor theory
of neutrinos [6] suggested that the neutrino is a massless
particle with a chiral field νL or νR. The experiment of
Goldhaber et al. in 1958 [7] supported this hypothesis,
establishing that neutrinos are left-handed particles.

At present, the effects of neutrino masses and mixing
are investigated in various experimental setups. There
are three kinds of experiments involving small neutrino
masses: (i) neutrino oscillation experiments, (ii) search
for neutrinoless double-beta decay, and (iii) measure-
ments of electron neutrino mass in the high-energy β
spectrum of 3H. There are also those experimental re-
sults that favor massive neutrinos and neutrino mixing in
(i) solar neutrinos (Homestake, Kamiokande, GALLEX,
SAGE, Super-Kamiokande), (ii) atmospheric neutri-
nos (Super-Kamiokande, Kamiokande, IMB, Soudan,
MACRO), and (iii) the accelerator LSND experiment.

In this project, we will provide a review of the basic
theory and phenomenology of massive neutrinos and neu-
trino oscillations. In Section II, we will consider how cat-
egorize the place of neutrinos in the Standard Model and
how extensions of it can accommodate neutrino masses.
In Section III we describe the fundamental phenomenol-
ogy of neutrino oscillations, where we show the relevant
equations for explaining the experimental observations
without going into any rigorous field theoretic deriva-
tion. In Section IV, we discuss the neutrino oscillation
experiments and their key results. In particular, we are
also interested in the upper and lower bounds for neu-
trino masses from direct searches and double beta decay
experiments. In Section V, we discuss models that ex-
tend the Standard Model and generate neutrino masses.
There is a significant amount of literature on the subject
but in this report, our main references are [8–13].

II. NEUTRINO MASS AND THE STANDARD
MODEL

One of the most beautiful aspects of modern theo-
ries of particles physics is the relation between forces
mediated by spin-1 particles and local gauge symme-
tries. Within the Standard Model, the strong, weak and
electromagnetic interactions are related to, respectively,
SU(3), SU(2) and U(1) gauge groups. Many features of
the various interactions are then explained by the symme-
try to which they are related. In particular, the way that
the various fermions are affected by the different types of
interactions is determined by their representations under
the corresponding symmetry groups.

A. Basic neutrino properties

Neutrinos are fermions that have neither strong nor
electromagnetic interactions. In group theory language,
they are singlets of SU(3)C × U(1)EM. Active neutrinos
have weak interactions, that is, they are not singlets of
SU(2)L. Sterile neutrinos, if they exist, have none of
the Standard Model gauge interactions and they are sin-
glets of the associated gauge group. It has half-integer
spin with a very tiny mass as implied by the phenom-
ena of neutrino oscillations. The existence of a neutrino
mass also strongly suggests the existence of a tiny neu-
trino magnetic moment of the order of 10−19µB , which
might allow for small electromagnetic interactions. Neu-
trinos have been shown experimentally to always have
left-handed chirality.

The Standard Model has three active neutrinos. They
reside in lepton doublets,

L` =

(
νL,`
`−L

)
where ` = e, µ, τ. (3)

Here e,µ and τ are the charged lepton mass eigenstates.
The three neutrino interaction eigenstates νe,νµ and ντ
are defined as the SU(2)L partners of the mass eigen-
states. The charged current interaction for leptons goes
like

−LC =
g

2
√

2

∑
`

(
νL`γ

µ`−LW
+
µ + `+Lγ

µνL`W
−
µ

)
(4)

Additionally, there are neutral current interactions for
neutrinos of the form

−LNC =
g

2 cos θW

∑
`

νL`γ
µνL`Z

0
µ. (5)

The charged and neutral current interactions yield all
neutrino interactions in the Standard Model.

The measurement of the decay width of the Z0 bo-
son into neutrinos makes the existence of exactly three
light (mν . mZ/2) active neutrinos an experimental fact.
Expressed in terms of the Standard Model prediction for
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single neutrino generation, the observed data [14] implies
that

Nν = 2.994± 0.012 (Fit to LEP data)

Nν = 3.00± 0.06 (Invisible Z width)
(6)

B. The Standard Model predicts mν = 0

The Standard Model is based on the gauge group

GSM = SU(3)C × SU(2)L × U(1)Y (7)

with three fermion generations, each generation consist-
ing of 5 different representations of the gauge group:

QL (3, 2) 1
6
, UR (3, 1) 2

3
, DR (3, 1)− 1

3
,

LL (1, 2)− 1
2
, ER (1, 1)−1 .

(8)

The notation above reads in the following way: for ex-
ample, a left-handed lepton field LL is a singlet of the
SU(3)C group, a doublet (2) of the SU(2)L group, and
carries hypercharge -1/2 under the U(1)Y group.

The electroweak gauge symmetry is broken by the non-
vanishing vacuum expectation value of the Higgs field,
through the Higgs mechanism. Using a doublet Higgs
representation φ

φ =

(
φ+

φ0

)
, (9)

with Higgs potential

V (φ) = −µφ†φ+ λ(φ†φ)2 (10)

then for µ2 > 0, the vacuum expectation

〈φ0〉 =

√
µ2

2λ
≡ v√

2
(11)

gives mass to the charged bosons and Z0

MW =
1

2
gv, cos θW =

MW

MZ
(12)

where θW is known as the Weinberg angle for neutral
gauge bosons. The gauge boson orthogonal to Z0 is the
massless photon. Every particle that couples to the Higgs
field acquires a mass.

Chiral symmetry forbids a bare mass term for the
fermions; fermion masses arise from the Yukawa inter-
actions,

−LYukawa = Y uijQLiiτ2φ
∗URj + Y dijQLiφDRj

+Y `ijLLiφERj + (h.c.)
(13)

after spontaneous symmetry breaking. The Yukawa in-
teractions give masses to charged fermions but neutrinos
remain massless. In general, neutrinos can have a mass

term of the Majorana type, which requires just one he-
licity state; however, since the νL is part of the SU(2)L

doublet field and possesses lepton number +1, the Majo-
rana mass term νTLC

−1νL, where C is the Lorentz con-
jugation matrix, transforms as an SU(2)L triplet—it is
not gauge invariant. It also violates the lepton number
symmetry by 2 units.

Initially, we might think it is possible to induce the
neutrino mass from non-perturbative effects. In the Stan-
dard Model, the only known source of lepton number
violation involves the so-called weak instanton effects.
However, even though the lepton number current con-
servation is indeed broken non-perturbatively though a
chiral anomaly, it turns out an identical contribution
can be found for the baryon number current in such a
way that the B − L current is conserved to all orders in
the gauge coupling. Because the neutrino mass operator
above also violates B−L, this shows that neutrino mass
vanishes even in the presence of non-perturbative correc-
tions. Consequently, we expect neither mixing nor CP
violation in the leptonic sector.

C. Extensions allow mν 6= 0

There are many good reasons to think that the Stan-
dard Model provides an inadequate description of all
known physical phenomena: the problem of a fine-tuned
Higgs mass might be solved by supersymmetry; gauge
coupling unification and the variety of gauge represen-
tations may be explained well by grand unified theo-
ries; and the existence of gravity suggests extensions like
string theories are relevant to Nature. If any of the pro-
posed modifications is realized in Nature, the Standard
Model becomes an effective field theory, valid as a low-
energy approximation to a more general theory up to
some energy scale ΛNP characterizing new physics.

Even as an effective low energy theory, the Standard
Model would still retain the gauge group, the spectrum
of fermions, and the pattern of spontaneous symmetry
breaking as valid ingredients to describe Nature at en-
ergies much smaller than ΛNP. The Standard Model
predictions, however, are modified with corrections pro-
portional to powers of E/ΛNP. This means that a more
general field theory than the Standard Model would have
to incorporate non-renormalizable terms.

A more general theory of new physics won’t have to re-
spect the accidental symmetries of the Standard Model.
Indeed it is known that there is a set of dimension-5 terms
made of Standard Model fields consistent with gauge
symmetry but violates

Gglobal = U(1)B × U(1)e × U(1)µ × U(1)τ , (14)

the accidental global symmetry corresponding to baryon
number and lepton flavor numbers. These terms are of
the form

Zνij
ΛNP

φφLLiLLj . (15)
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In particular, eq. (15) violates L by two units and leads
to neutrino masses:

(Mν)ij =
Zνij
ΛNP

v2

2
. (16)

This provides a generic extension of the Standard Model
which, among other things, would natural explain why
the neutrino mass is small (it scales with the inverse of
the large energy scale of new physics), and how the lepton
flavor symmetries are broken, allowing for lepton mixing
and CP violations.

The best known scenario that leads to eq. (16) is
the see-saw mechanism [27], where we assume the ex-
istence of heavy sterile neutrinos with bare mass terms
and Yukawa interactions that result in a mass matrix

Mν =

 0 Y ν
v√
2

(Y ν)T
v√
2

MN

 (17)

Whenever the eigenvalues of MN are much larger than
the electroweak breaking scale v, diagonalization of Mν

leads to three light mass eigenstates with a mass matrix
(16). We will see more details of ways to go beyond the
Standard Model in Section V.

III. THEORY OF NEUTRINO OSCILLATIONS

A. Dirac and Majorana fermions

Massive fermions can either be of the Dirac or Majo-
rana type. If they carry electric charge, then they are
necessarily Dirac fermions. Electrically neutral particles
such as neutrinos are expected to by Majorana fermions
on rather general grounds, no matter how they acquire
their mass. Phenomenological differences between Dirac
and Majorana neutrinos are tiny for most purposes be-
cause neutrinos are very light and the chiral weak inter-
actions are well described in the V-A form. This knowl-
edge is basic material, however, and it is useful to briefly
review them here.

Consider the free Dirac field, whose field operator is
given by

ψ =

∫
d3p

(2π)3/2

1√
2p0

∑
s

[
use
−ip·xas + vse

ip·xa†s
]
(18)

where s = ±1/2, a†s(p), as(p) are creation and annihila-
tion operators, and the coefficients us(p), vs(p) satisfy

(γµpµ −m)us(p) = 0, (γµpµ +m)vs(p) = 0 (19)

with γµ being the usual Dirac gamma matrices that obey
the anti-commutation relations

{γµ, γν} = 2ηµν . (20)

Since the particle and antiparticle are identical for a Ma-
jorana neutrino, it feels like ψ(x) in that situation would

be directly related to ψ(x)∗. However, if we just naively
impose ψ = ψ∗ we eventually run into terms that are not
Lorentz covariant. Instead we define a conjugate field

ˆψ(x) ≡ γ0Cψ
∗(x) (21)

where the specific form of the conjugation matrix C =
iγ2γ0 depends on the representation used for γµ.

The condition for the Majorana field in terms of the
Dirac field is then obtained by setting

ψ(x) = ψ̂(x). (22)

If we express the Dirac bispinor as

ψD(x) =

(
χ(x)

σ2φ∗(x)

)
(23)

where χ(x) is a left-handed Weyl spinor then the Majo-
rana spinor is obtained in the case when φ = χ. In this
way, the Dirac fermion is shown to be equivalent to two
Majorana fermions of equal mass.

If we introduce a two-component spinor ρ such that

χ =
1√
2

(ρ2 + iρ1), φ =
1√
2

(ρ2 − iρ1), (24)

then the U(1) symmetry of the Dirac Lagrangian

LD = ψγµ∂µψ −mψψ, (25)

which for ψ given by eq. (23) yields

LD = −i
∑
α

ρα
†σµ∂µρα −

m

2

∑
α

ρTασ
2ρα + (h.c.), (26)

corresponds to a continuous rotation symmetry between
components of ρ, that is,

ψ′D = eiαψD =⇒
(
ρ′1
ρ′2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ρ1

ρ2

)
(27)

which result from the mass degeneracy between ρ1, ρ2,
indicating that the concept of fermion number is not ba-
sic.

The mass term in eq. (26) vanishes unless ρ and ρ∗

anti-commute, so the quantized field of interest is the
Majorana fermion at the onset. The solutions to eq. (26)
is identical in form to the Dirac field in eq. (18)

ψM =

∫
d3p

(
√

2π)3

1√
2E

∑
s

[
use
−ip·xas + vse

ip·xa†s
]
.(28)

but with u = CvT . The expression in eq. (28) differs
from the usual Fourier expansion for the Dirac spinor in
eq. (18) in two significant ways: (i) the spinor is two-
component, as there is a chiral projection acting of us(p)
and vs(p) and (ii) there is only one Fock space since par-
ticle and anti-particle coincide.
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For completeness, it might be worth noting that two
independent propagators follow from eq. (26):

〈0| ρ(x)ρ∗(y) |0〉 = iσµ∂µ∆F (x− y),

〈0| ρ(x)ρ(y) |0〉 = mσ2∂µ∆F (x− y),
(29)

where ∆F (x− y) is the usual Feynman propagator. The
first one is the “normal” propagator that intervenes in to-
tal lepton-number-conserving (∆L = 0) processes, while
the other one describes the virtual propagation of Majo-
rana neutrinos in ∆L = 2 processes such as neutrino-less
double beta decay.

B. The PMNS mixing matrix

To include neutrino mixing in the Standard Model, one
should first decide whether new neutrino flavors need
to be introduced. For now we suppose that there are
no more neutrino states beyond those in the Standard
Model. We can then give a phenomenological descrip-
tion of how neutrinos convert from one species to another
by adding an explicit mass term in the Standard Model
Lagrangian

LMν
=

1

2
(Mν)ij(νiPLνj) + (h.c.) (30)

for some arbitrary complex symmetric 3×3 matrix, where
PL = 1

2 (1+γ5). With massive neutrinos, neutrino oscilla-
tions follow when the different neutrino states are allowed
to mix.

Consider a neutrino beam created in a charged current
interaction along with an antilepton `. We call the neu-
trino ν`. In general, this is not a physical particle but a
superposition of physical fields νa with different masses
ma

|ν`〉 =
∑
α

U`α |να〉 . (31)

For simplicity, we assume that the 3-momentum of the
beam are the same but because the masses are different,
the energies of all components can’t all be equal. In this
case, after time t, the state evolves into

|ν`(t)〉 =
∑
α

e−iEαtU`α |να〉 (32)

where we suppose for the moment that the neutrinos are
stable.

Eq. (32) represents a different superposition of states
compared to eq. (31). The probability amplitude of find-
ing the original state in the new beam is then given by

〈ν`|ν`′(t)〉 =
∑
α

e−iEαtU`′αU
∗
`α (33)

since the mass eigenstates are orthonormal, i.e.
〈νβ |να〉 = δαβ . Thus, at any time t, the probability of ν`

surviving in the beam is

Pr[ν`|ν`′(t)] = | 〈ν`|ν`′(t)〉 |2

=
∑
α,β

∣∣U`αU∗`′αU∗`βU`′β∣∣
× cos [(Eα − Eβ)t− φ``′αβ ] (34)

where φ``′αβ = arg
(
U`αU

∗
`′αU

∗
`βU`′β

)
.

In all situations of practical interest, neutrinos are
highly relativistic, so we are allowed to make the ap-
proximation

Eα = |~p|+ m2
α

2|~p|
(35)

and the time t to be replaced by the distance x traveled
by the beam. Thus,

Pr[ν`|ν′`] =
∑
αβ

∣∣U`αU∗`′αU∗`βU`′β∣∣ cos

(
2πx

Lαβ
− φ``′αβ

)
(36)

where the oscillation lengths Lαβ ,

Lαβ ≡
4π|~p|
∆m2

ab

,
(
∆m2

ab = m2
a −m2

b

)
(37)

determine the relevant length scale for which oscillation
effects stay appreciable.

Observe that if x = κLαβ for some positive integer κ,

Pr[ν`|ν′`] = δ``′ . (38)

This means that the interesting non-trivial effects we
want to observe experimentally happen in that regime
in between multiples of Lαβ .

In the simplest case where only two flavors of neutrinos
participate in oscillations, we have a rather simple mixing
matrix

U =

(
cos θ sin θ
− sin θ cos θ

)
(39)

so the survival probability of ν` reduces to

Pr[ν`|ν′`] = 1− sin2 2θ sin2

(
x∆m2

12

4|~p|

)
. (40)

Of course, we know that there are (at least) three neu-
trinos in Nature so to be more realistic we should con-
sider mixing across three generations of neutrinos. For
simplicity, we start with the CP-preserving case where U
is a real-valued matrix. Here the oscillation probabilities
are

Pr[ν`|ν′`] =
∑
α

(U`αU`′α)2+

2
∑
α>β

U`αU`′αU`βU`′β cos

(
x∆m2

αβ

2|~p|

)

= δ``′ − 4
∑
α>β

U`αU`′αU`βU`′β sin

(
x∆m2

αβ

4|~p|

)
.

(41)
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The most general mixing matrix excluding CP-
violation effects is given by

U =

 c12c13 −s12c13 s13

s12c23 + c12s23s13 c12c23 − s12s23s13 −s23c13

s12s23 − c12c23s13 c12s23 + s12c23s13 c23c13


(42)

where cαβ = cos θαβ and sαβ = cos θαβ . This mixing
matrix, which looks similar to the Cabibbo-Kobayashi-
Maskawa matrix for quark-mixing weak decays, is called
the PMNS matrix—after Pontecorvo, Maki, Nakagawa
and Sakata—and it describes the amplitude in which
a particular neutrino type ν′` participates in a charged-
current interaction with a charged lepton `. This matrix
differs from the mass matrix in the Lagrangian because
of the appearance of extra phases in the charged current
mixing term which introduce CP-violation in neutrino
interactions. These Majorana phases disappear in the
expressions for probabilities, which is why the PMNS ma-
trix is sufficient for neutrino oscillation observations even
though it can not distinguish between the possibilities of
Dirac and Majorana fermions.

It is interesting to look at a couple of limiting cases,
the first one being

x∆m2
12

2|~p|
� 1 (43)

which leads to

Pr[ν`|ν′`] = δ``′ − 4U`βU`′β

× (δ``′ − U`3U`′3) sin2

(
x∆m2

32

4|~p|

)
. (44)

In this case, the survival probability `′ = ` is just like in
eq. (40).

The other limiting case of interest is

x∆m2
3j

2|~p|
� 1, (j = 1, 2) (45)

where the oscillatory terms in the probability average out
when we integrate over the energy spectrum of ν`, leading
to

Pr[ν`|ν′`(t)] = δ′``− 2U`3U`′3 (δ``′ − U`3U`′3)

−4U`1U`′1U`2U`′2 sin2

(
x∆m2

21

4|~p|

)
(46)

If we had an electron neutrino, the survival probability
would be given by

Pr[νe|νe(t)] = cos4 θ13

[
1− sin2 2θ12 sin2

(
x∆m2

21

4|~p|

)]
+ sin4 θ13

(47)
which for small θ13 reduces to eq. (40) with ` = `′ = e.

C. Oscillations with unstable neutrinos

The analysis above changes quite dramatically if neu-
trinos are unstable [15]. To see how the probabilities are
modified, we consider the simple case of two-flavor mix-
ing. Suppose the neutrino states are νe and νµ

|ν`〉 = U`1 |ν1〉+ U`2 |ν2〉 , ` = e, µ (48)

where ν1, ν2 are the mass eigenstates and U is the two-
flavor mixing matrix (39) as before. Suppose that the
mass mν1 > mν2 then we can consider the decay process

ν1 → ν2 +X, any X with decay lifetime Γ−1. (49)

Thus, suppose we have some initial state

|νin〉 = cosα |νe〉+ sinα |νµ〉 (50)

then after time t this state is generally expected to evolve
into

|ν(t)〉 = e−iE1te−Γt/2 sin(θ + α) |ν1〉
+e−iE2t cos(θ + α) |ν2〉+

∑
k

ck |νk, X〉 (51)

where the last term corresponds to the final state of the
ν1-decay.

Hence, the survival probabilities for both the νe and
νµ components of the initial beam are given by

Pr[νe|νin] = cos2(θ + α) cos2 θ + e−Γt sin2(θ + α) sin2 θ

+
1

2
e−Γt/2 sin 2θ sin 2(θ + α) cos

t∆m2

2|~p|
,

Pr[νµ|νin] = cos2(θ + α) sin2 θ + e−Γt sin2(θ + α) cos2 θ

−1

2
e−Γt/2 sin 2θ sin 2(θ + α) cos

t∆m2

2|~p|
.

In the limit of fast decays, Γt � 1, these expressions
simplify into

Pr[νe|νin] = cos2(θ + α) cos2 θ,
Pr[νµ|νin] = cos2(θ + α) sin2 θ,

(52)

which can correspond to long distances traveled.
To see how this compares with the scenario with stable

neutrinos, take the case of an initial beam of electron
neutrinos with α = 0. In the fast decay limit,

Pr[νe|νe(t)] = cos4 θ, (53)

which can become very small close to π/2. Compare this
to eq. (40), which averaging over the distance x gives

Pr[νe|νe(t)] = 1− 1

2
sin2 2θ >

1

2
(54)

for all values of θ. Therefore, the physical impact of
unstable neutrinos is rather significant.
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D. Oscillations in matter and the MSW effect

So far our treatment of neutrino oscillations assumes
that the neutrino propagates in vacuum. Because neutri-
nos hardly interact, this is a generally good approxima-
tion. To include medium effects, the standard approach
is to consider changes in the interactions as a change in
effective neutrino mass, similar to how the refractive in-
dex is modified for photons.

Consider neutrinos propagating in an environment like
the interior of the sun. We can approximate this environ-
ment as a uniform background medium if its fluctuations
are tiny enough. In this case, a mean field approximation
is sufficient to describe the charged current interactions
between say the electrons and neutrinos

LC,eff =
GF√

2
[ieγµ(1 + γ5)νe] [iνγµ(1 + γ5)e] . (55)

Using a Fierz transformation, this can be rewritten as

LC,eff =
GF√

2
[iνeγµ(1 + γ5)νe] [ieγµ(1 + γ5)e]

+(other terms).
(56)

where we can easily read off the electron 4-current

Jµe = ieγµe. (57)

There is also an axial current ieγµγ5e that vanishes in
any parity-invariant environment like the Sun’s interior.

The neutrino propagation term in the effective La-
grangian becomes

Lν =
GF√

2
ne
[
iνeγ

0(1 + γ5)νe
]

(58)

where ne is the local electron number density. Note that
Lν shifts the neutrino energies by neGF /

√
2. None of

the other charged-current interaction terms for neutrino
vanish.

To see how the medium-dependent terms affect neu-
trino propagation, we can look at the two-flavor case.
Since the new term merely shift the electron neutrino
energy, the correction to electron neutrino Hamiltonian
Hνe is

δHνe =
√

2GFne |νe〉 〈νe| . (59)

This is added to Hνe in vacuum, here understood to be
in the flavor basis {|νe〉 , |νµ〉}:

Hνe = E +
m2

1 +m2
2

4E
+

∆m2

4E

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
(60)

where E ≈ |~p| since neutrinos are highly relativistic in
all practical situations.

The resulting effective mass matrix leads to

Heff =
neGF√

2

(
1 0
0 −1

)
+

∆m2

4E

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
(61)

where terms proportional to the unit matrix are gone
because they don’t affect oscillation probabilities.

An important special case is when the medium-
dependent term becomes maximal, i.e.,

neGF√
2

=

(
∆m2

4E

)
cos 2θ (62)

a condition that defines the resonance conditions, also
called the MSW effect, after Mikheyev, Smirnov and
Wolfenstein [16].

In essence, neutrino propagation in uniform matter is
an exercise in degenerate perturbation theory: the de-
generacy in the vacuum states of massless νe and νµ is
broken by two small effects: the neutrino mass matrix
and a medium-dependent term. Therefore, large mixings
are possible even with small mixing angles provided that
these two effects are roughly the same order of magni-
tude.

When the medium is non-uniform, the situation is not
significantly different provided the following adiabaticity
condition is fulfilled:

dθ̃

dx
�
∣∣∣∣∆m2

21

2E

∣∣∣∣ (63)

where θ̃ is the effective mixing angle.
For solar neutrinos, adiabatic evolution through res-

onance is a fair approximation of what happens during
propagation. When these neutrinos hit earth, the total
survival probability for νe goes like

Pr[νe,⊕|νe,�] = sin2 θp sin2 θd + cos2 θp cos2 θd (64)

where θp is the medium-dependent mixing angle during
solar production and θd is the vacuum mixing angle dur-
ing detection. The numbers obtained from this analysis
match reasonably well to experimental data to date.

E. Sterile neutrinos

Another possibility for explaining neutrino oscillations
come from supplementing the Standard Model neutrinos
with additional states. In general one might add N Ma-
jorana neutrino fields sx, x = 1, 2, ..., N . Additional fields
means more freedom in the kinds of interactions which
can be entertained. We assume that the new fermions
couple only through the mass matrix and so typically in-
teract more weakly with matter than even the regular
neutrinos—this lack of interaction with ordinary matter
is why they are deemed sterile neutrinos.

Sterile neutrinos lead to new terms in the Standard
Model Lagrangian of the form

Ls = − 1
2sxγ

µ∂µsx − 1
2

[
MxysxPLsy

+mabνaPLνb + 2µaxνaPLsx + (h.c.)
] (65)
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where the neutrino mass matrix(
m µ
µT M

)
(66)

is an arbitrary symmetric (3 +N)× (3 +N) matrix.
The freedom to choose µ,m,M leads to various mech-

anism for neutrino physics so we will only briefly sum-
marize a few possibilities: If lepton number is conserved,
then we have N = 3 with neutrino states such that

PLνa → eiωPLνa, and PLsa → e−iωPLsa. (67)

In this case, provided m = M = 0, the mass term is in-
variant for any choice of µ. Then, it becomes convenient
to group the 6 Majorana fields νa, sa into 3 Dirac fields

ψa =

(
νa
sa

)
s. t. ψa → eiωψa. (68)

We get the usual charged current mixing matrix

LC =
ig√

2
UaiWµ

(
`aγ

µγLψi
)

+ (h.c.) (69)

where Uai is the usual PMNS matrix (42). This is iden-
tical to the scenario with 3 Majorana neutrinos except
without the CP-violating phases. Furthermore, there are
no off-diagonal couplings in the neutral-current interac-
tions, which implies that the sterile neutrinos don’t cou-
ple to Z0.

Without the CP-violating phases, the Dirac neutrino
model works precisely the same as the Majorana neu-
trinos because of helicity suppression: the ratio of am-
plitudes for detecting νa to sa is typically of the order
p0/m, which in the lab-frame corresponds to the proba-
bility of νa detection at least 1012 times more likely than
sa scattering. It is this very small probability of getting
a right-handed sterile neutrino that makes them practi-
cally irrelevant in the neutrino phenomenology.

More generic sterile neutrinos can be distinguished ac-
cording to the relative sizes of µ,m,M :

1. µ � m,M : Sterile neutrinos do not mix with the
ordinary neutrinos in any significant way; therefore,
for all practical purposes they don’t couple at all
with the usual Standard Model particles.

2. µ � m,M : This case reduces to the Dirac neu-
trinos above when m = M = 0. If N > 3, this
scenario leads to 3 Dirac neutrinos whose squared
masses are the eigenvalues of µµ†, plus (N − 3)
massless sterile neutrinos which don’t participate
in weak interactions. If m,M are not exactly zero,
then we have a perturbation of the Dirac case. The
almost degenerate pairs of neutrinos are close in
mass that should become particle-antiparticle pairs
in the vanishing limit. For the same reason, the
mixing angle of these nearly degenerate states is
also almost maximal. From available data, such
pseudo-Dirac neutrinos are ruled out for m,M &
10−9 eV.

Neutrino type |Usν | . x ∆m2
14 . y

Solar 0.001 10−4

Reactor 0.1 10−3

Atmospheric 0.2 10−3

Supernova 0.01 10

Nucleosynthesis 0.1 10−8

CMB 0.001 10

TABLE I. Currently known data imposing limits on existence
of sterile neutrinos. |Usν | is the sterile-active mixing element
and ∆m2

14 is the relevant squared mass difference range in
units of eV2

3. m ≈ µ ≈ M : When all the mass matrices are
comparable, the observed data suggests light ster-
ile neutrinos such that m,µ,M ≈ 10−2 eV form
which we can expect large oscillation effects among
all neutrino eigenstates. Because of the lack of evi-
dence for sterile neutrinos, this model is not favor-
able.

4. m � µ � M : In this scenario, there are N heavy

eigenstates with eigenvalues given by
√
M†M as

well as 3 mass eigenstates with eigenvalues from√
M†M, with

M = µM−1µT +m. (70)

The heavy eigenstates have mixing angles with ster-
ile neutrinos of the order O(µ/M). The light eigen-
states are almost pure flavor eigenstates but also
have order O(µ/M) sterile mixing. This way of ob-
taining neutrino masses is called the see-saw mecha-
nism because increasing the mass from M decreases
the mass from M, and vice-versa.

Table (I) summarizes the constraints on the existence
of sterile neutrinos based on different experiments and
observations [9].

IV. EXPERIMENTAL STUDIES OF NEUTRINO
MASS AND MIXING

Here we categorize the experiments aiming to mea-
sure the neutrino mass and to test neutrino oscillations
according to type of experiment or observations being
made. First, there are direct kinematic searches for neu-
trino mass and experiments looking for evidence of neu-
trinoless double beta decays. The present limits on the
neutrino masses obtained from such studies, assuming
the normal hierarchy of masses, are:

mν2 < 190 keV and mν3 < 18.2 MeV. (71)

The best limits for the mass of the lightest neutrino, in-
stead, have been obtained from the Mainz and the Troitsk
experiments, where

mν1 < 2.2 eV. (72)
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The search for neutrinoless double beta decays is impor-
tant because the observation of these decays would be
a clear indication in favor of a Majorana neutrino, as-
suming CPT invariance holds. The Heidelberg-Moskow
collaboration published a result in 2001 and later in 2004
showing at least a 2.2σ signal for neutrinoless double beta
decay [17], but this result has been strongly contested and
its validity is still an open question.

The second group of experiments are designed to in-
vestigate neutrino fluxes from natural sources: solar and
atmospheric. These observations are historically impor-
tant for being providing the earliest evidence for neutrino
mixing and they remain highly relevant in astrophysical
and cosmological research.

Lastly, we also look at experiments that employ neu-
trino beams produced at accelerators and nuclear re-
actors. They are usually divided in long- and short-
baseline, according to the distance between the neutrino
production point and the detector. Many short base-
line accelerator experiments weren’t able to detect any
signal for neutrino oscillations. Nonetheless, they are
important, because they provide us with constraints on
the possible values of the neutrino mixing parameters.
The most important limits have been obtained by NO-
MAD and CHORUS at CERN, which had experiments
designed to detect τ production from a νµ beam, indi-
cating νµ–ντ oscillations [24].

A. Neutrino-less double beta decay

Double beta decay is a higher-order nuclear process
wherein a nuclei with charge Z changes into another with
Z + 2 without modifying its atomic mass A. In nature,
there are 35 isotopes known to have the right ground
state configuration for the decay reaction

(Z,A)→ (Z + 2, A) + 2e− + 2νe, (73)

which can be seen as two simultaneous neutron beta de-
cays. Another decay mode for double beta decay was
proposed by Giulio Racah in 1937 and Wendell Furry in
1939:

(Z,A)→ (Z + 2, A) + 2e−, (74)

a process which clearly violates lepton number conserva-
tion and is forbidden by the Standard Model. It can be
viewed as a two-step process

(Z,A) → (Z + 1, A) + e− + νe,

(Z + 1, A) + νe → (Z + 2, A) + e−
(75)

where a neutron first undergoes ordinary beta decay and
then if νe = νe indicating we have Majorana neutrinos,
then the second process can occur after that. Moreover,
to allow helicity matching, it is necessary to have mν > 0
so that the neutrinos don’t possess fixed helicities.

For more detail, let’s consider the matrix element for
the decay,

M∼ 2G2
FW

µν

[
uγµPL

(
−iγmupµ +m

p2 +m2

)
PLγ

T
ν u

T

]
(76)

where u, uT are external electron spinors and Wµν is the
weak current matrix element. The factor PLγ

T
ν u

T comes
from antiparticle considerations. Because

PLγ
muPL = 0 (77)

only the mass term in the middle factor contributes, giv-
ing rise helicity flips and ∆L 6= 0.

For small neutrino mass, the decay rate is suppressed
by a factor |U2

ejmj |2, which represents a factor of at least

1012 smaller in probability compared to its 2ν counter-
part . Despite being partially compensated by other fac-
tors such as having a larger phase space to work with,
this tiny relative probability of neutrinoless double beta
decay makes it hard to observe experimentally.

The neutrinoless mode can be distinguished experi-
mentally from the 2ν mode by examining the energy
spectra of the daughter electrons. In neutrinoless dou-
ble beta decay

E1 + E2 = Q, (78)

where Q ≈ 2 MeV is the typical decay energy for the
mode, whereas in the 2ν case,

E1 + E2 < Q (79)

since there is a distribution of electron energies depending
on how much energy goes to the neutrinos. To observe
this difference, we would need to examine the electron
double beta decay spectrum near its end point at high
energy resolution. The neutrinoless decay mode is also
sensitive to the different CP-violating phases eiα that
appear in the charged current interaction for Majorana
neutrinos.

Experimentally, the search for neutrinoless double beta
decay relies on finding a peak in the region below 4.3
MeV. Common to all experiments is the low-background
environment due to long expected half-lives. The types
of experiments being made are

1. Ge semiconductor devices: Heidelberg-Moscow col-
laboration, IGEX;

2. Cd-Zn-Te detectors: COBRA in the Gran Sasso
Underground Laboratory;

3. Cryogenic bolometers: CUORINCO at Gran Sasso;

4. time-projection chambers: NERMO-3 in the Frejus
Underground Laboratory.

So far, there is no compelling evidence to suggest that
neutrinoless double beta decay does indeed occur. Esti-
mates on the decay lifetime lead to corresponding limits
on the neutrino mass, and some of the key experimental
results available are shown in table (II).
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Isotope Half-life (yrs) mlimit
ν (eV)

48
20Ca→48

22Ti 9.5× 1021 8.3
76
32Ge→76

34Se 1.9× 1025 0.35
76
32Ge→76

34Se 0.7× 1025 0.6
82
34Se→82

36Kr 2.1× 1023 2.3
100
42 Mo→100

44 Ru 5.8× 1023 1.2
116
48 Cd→116

50 Sn 1.7× 1023 1.7
128
52 Te→128

52 Xe 7.7× 1024 1.1
130
52 Te→130

54 Xe 3.0× 1024 1.0
136
54 Xe→136

56 Ba 4.4× 1023 2.3
150
60 Nd→150

62 Sm 2.1× 1021 4.1

TABLE II. Decay lifetime estimates and the corresponding
neutrino mass limits.

Chain Reaction Φ⊕ (cm−2s−1)

pp

pp 5.95× 1010

pep 1.40× 108

hep 9.30× 103

7Be 4.77× 109

8B 5.05× 106

CNO cycle

13N decay 5.48× 108

15O decay 4.80× 108

17F decay 5.63× 106

TABLE III. Solar process that produce neutrinos and the cor-
responding fluxes.

B. Solar neutrinos

Neutrinos play an essential role in stellar evolution be-
cause of reactions such as

4p→ α+ 2e+ + 2νe + 28 MeV (80)

which represents a series of successive processes that lie
at the core of neutrino astronomy. Because neutrinos
hardly react with any intervening matter, it is more ad-
vantageous to examine solar neutrinos as opposed to so-
lar radiation, since the former carry valuable information
about the core of stars, allowing us indirect access to
whatever happens in there. The main processes respon-
sible for neutrino production [8] are listed in table (III).

The earliest study of solar neutrinos was the Homes-
take experiment [19] headed by Raymond Davis, Jr. and
John Bahcall in the late 1960s, which used the inverse
decay on chlorine

37Cl + νe → 37Ar + e−, (81)

with threshold energy Ethr ≈ 0.81 MeV. Hence, it was
sensitive to the pep, 7Be, 8B and hep components of the
solar neutrino flux. The results were really surprising,

because Homestake found a discrepancy in the solar neu-
trino flux of more than 60% that predicted by the stan-
dard solar model [20]. The updated value of the double
ratio R for the chlorine experiment,

R =
(µ/e)data

(µ/e)MC
, (82)

where MC stands for Monte Carlo predictions of the ratio
(µ/e) of muon-electron events, is

R = 0.34± 0.03. (83)

The advantage of considering (µ/e) is that the flux uncer-
tainties do not affect the result. If there are no neutrino
oscillations, then R = 1 [21].

The Homestake result was later verified in similar ex-
periments using gallium, which has a lower energy thresh-
old (Ethr ≈ 233 keV), making them sensitive to the main
pp component of the solar neutrino flux. The gallium
results indicated that

R = 0.60± 0.05 (SAGE),

R = 0.58± 0.05 (GALLEX, GNO).
(84)

These observations confirmed the existence of the solar
neutrino puzzle.

Essential improvement in solar neutrino observa-
tions came with the water Cerenkov experiments,
Kamiokande, and Super-Kamiokande that probed into
the elastic scattering νe + e− → νe + e− and confirmed
the electron neutrino deficit [18]. The real breakthrough,
however, with the SNO deterium Cerenkov experiment
in 2001, which studied three processes simultaneously:
charged-current, neutral current and elastic scattering
reactions. During its first phase, SNO observed the
charged current and elastic scattering events, with an
energy threshold for electron detection of 6.75 MeV. The
flux measured from the charged current was

Φνe,C = 1.75± 0.07× 106 cm−2s−1 (85)

which corresponded to a double ratio of

R = 0.35± 0.03. (86)

The observations at Super-Kamiokande didn’t agree with
the νe flux found at SNO, which found

Φν = 3.69± 1.13× 106 cm−1s−1. (87)

This result was the first evidence (at 3σ level) of the
presence of different flavored neutrinos in the solar neu-
trino beam, providing the most robust evidence of into
other active neutrinos. It is also remarkable that the
sum of the νe and νµ fluxes give a total flux value that
agrees well with Standard Model predictions, which ac-
tually strongly disfavors the hypothesis that these active
neutrinos oscillate into sterile ones.
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Experiment Double ratio R

Kamiokande 0.60± 0.06± 0.05

IMB 0.54± 0.05± 0.12

Sudan2 0.69± 0.19± 0.09

Frejus 0.87± 0.21

NUSEX 0.99± 0.40

TABLE IV. Double ratios for atmospheric neutrino observa-
tions.

Super-Kamiokande
sub-GeV 0.638± 0.16± 0.050

multi-GeV 0.658± 0.030± 0.078

TABLE V. Best available data for R.

C. Atmospheric neutrinos

Atmospheric neutrinos are useful both in the direct
study of neutrino oscillations and as the background and
calibration beam in the search for neutrinos from astro-
physical sources [22]. Interactions of cosmic ray protons
with nuclei in the upper atmosphere leads to various pro-
cesses that produce electron and muon-type neutrinos
that belong to the following chain of reactions:

p+X → π± + Y

π± → µ± + νµ (88)

µ± → e± + νe + νµ

where we don’t distinguish between neutrinos and an-
tineutrinos, as what is done in experiments. The π± can
be replaced by K±. A simple counting argument shows
that r = νµ/νe = 2. The values for the double ratio R in
early experiments (82) can be found in table (IV). The
error bars account for the statistical and systematic er-
rors, respectively. The first two experiments in the list
employ Cerenkov detectors while the last three used iron
bar calorimeters. In the water Cerenkov detectors, the
muons are distinguished from the electrons either (i) by
the size of the Cerenkov light rings or (ii) by observing
the products of muon decay.

The flux observations for atmospheric neutrinos
were verified later on with experiments by the Super
Kamiokande collaboration in the 1990s, which obtained
the best known results for the double ratio, shown in
table (V).

Notice that the first three experiments in table (IV)
implies either muon depletion or an excess of electron
events. To decide which, we can examine the up-down
symmetry of detection events. Up (U) refers to events
where the neutrino crossed the earth before hitting the
detector while down (D) refers to events where the neu-
trino directly comes from the atmosphere to the detector.
This leads to an observable quantity

α` =
U −D
U +D

. (89)

Experiments indicate that for the electron, αe = 0 while
αµ < 0 for high momenta. This evidence suggests that
R < 1 is a consequence of a reduced muonic neutrino flux,
which could be due to oscillations whose probabilities are
enhanced by the interaction with matter.

D. Reactor experiments

Nuclear reactors have long played a pivotal role in neu-
trino research, from their first detection to the most re-
cent neutrino oscillation experiments. Reactors are high
intensity, isotropic sources of νe, a product of β− decay
of neutron-rich fragments of uranium-plutonium fission.
Almost all reactor experiments detect antineutrinos via
inverse beta decay

νe + p→ e+n. (90)

The observed energy spectrum for inverse beta decay has
a peak around 3.6 MeV. Inverse beta decay occurs only
for electron antineutrinos with sufficiently high energies
(& 1.8MeV) so only roughly a quarter of the fission events
with νe is detected from the reactor core.

When Reines and Cowan first detected the neutrino,
they were looking for antineutrinos from a nuclear reac-
tor [23]. In an initial experiment in 1953, they saw an
antineutrino signal from inverse beta decay as the de-
layed coincidence between a positron and neutrino cap-
ture in cadmium, releasing ∼ 8 MeV in gamma rays.
Because the experiment had a high background(signal-
to-noise: 1/20) the results were inconclusive: 0.41± 0.20
events/minute.

In 1956 the experiment at Savannah River yielded bet-
ter observations. There, the inverse beta decay produced
two signals: (i) a prompt signal from the positron anni-
hilation, creating 2 gamma rays with energy 0.51 MeV
and (ii) a delayed neutron capture with the ∼ 8 MeV
gammas. With a signal-to-background ratio of 3 to 1,
they reported a cross-section of

σ = 6.3× 10−44cm2 (91)

which agreed with the theory at the time. In 1959 parity
violation was found and Reines and Cowan revised their
analysis to include parity violation effects and arrived at

σ = 12+7
−4 × 10−44cm2 (92)

which matched the new theoretical predictions.
As was established before, neutrino oscillations are el-

egantly described by a picture where flavor eigenstates ν`
are viewed as admixtures of mass eigenstates νj , which
undergo mixing according to the unitary matrix (42).
The PMNS matrix is typically expressed in terms of Euler
angles θ12, θ13, θ23 and depending on model, may include
CP-violating phases αi as well.

The oscillation probability (40) shows the θ depen-
dence, which in almost all neutrino studies typically in-
volve the disappearance of electron or muon neutrinos.
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For reactor studies, experiments are often designed to be
most sensitive to the parameter θ13, that is, lightest to
heaviest mass transitions.

The best current limit on sin2 2θ13 comes from the
CHOOZ collaboration [25]. The CHOOZ experiment
uses a single detector with a 5 ton target of GF-loaded
liquid scintillator at a distance 1.05 km from two 4.2
GWth reactors. It observed a prompt signal from the
positron and delayed signal from neutron capture that
yielded κ = 4, 5 gammas with energies ∼ 8 MeV:

n+m Gd→ m+1Gd∗ → Gd + κγ. (93)

The Gd serves to shorten the neutron capture time to
300 µs, increasing the neutron signal while simultane-
ously reducing background effects.

The ratio of observed to predicted flux is

r = 1.01± 0.028(stat)± 0.027(sys). (94)

For ∆m2 = 2.5 × 10−5 eV2, the CHOOZ result corre-
sponds to

sin2 2θ13 < 0.15 at 90% confidence level. (95)

E. Accelerator-based studies

The pioneering accelerator experiments on neutrino os-
cillations were designed to look for oscillations similar
to quark mixing, that is for small mixing angles. CHO-
RUS and NOMAD are two recent experiments that found
no oscillations between νµ and ντ , setting the oscillation
probability limit to below 1 percent. There have also
been experiments (K2K, MINOS) that unambiguously
measured the disappearance of νµ, which would corre-

spond to ∆m2 = 3× 10−3 eV2.
The accelerator LNSD experiment has reported evi-

dence of muon to electron neutrino transition at ∆m2 =
0.1 eV2. If this result is verified, it would call into ques-
tion the current number of neutrinos and strongly suggest
the existence of other neutrino flavors. What is known at
the moment is that the LNSD signature can be excluded
as being due to a simple oscillation scenario, as shown by
the MiniBooNE experiment.

One of the key issues in accelerator neutrino studies
wishes to address is the existence of sterile neutrinos, So-
lar and atmospheric evidence already suggest that two of
the three mixing angles are large. The third mixing angle
hasn’t been measured but the results from the CHOOZ
experiment imply that it has to less than 8◦. If the third
mixing angle is non-zero, it follows that there will be
CP-violation in the lepton sector.

In general, neutrino beams originate from charged par-
ticles that decay into neutrinos. To isolate the neutrinos,
the charged particles are magnetically focused to travel
in one direction and given enough space in which to de-
cay while being in flight. Conventional beams start with
pions that yield muon neutrinos or antineutrinos, with a

Detector M(kton) νe? νµ? ντ? Eideal
ν

Liquid Ar 0.6 Y Y - huge

H2O Cereknov 50 Y Y - < 2 GeV

Emulsion/Pb/Fe 0.27 Y Y Y > 0.5 GeV

Scintillator 1.0 Y Y - huge

Steel 5.4 - Y - > 0.5 GeV

TABLE VI. Detector types used or planned in accelerator
neutrino studies. M indicates largest mass to date. ν`? indi-
cates event identification.

small electron neutrino component from kaon and muon
decay. The π themselves are obtained by first produc-
ing an intense beam of protons then putting a long, thin
target material in the path of the protons—long so the
interaction time for creating π is increased while thin so
that secondary interactions of the π with the target are
reduced.

Focusing a neutrino beam requires a strong magnetic
field with an integrated path length proportional to the
radius at which the particles enter the focusing sys-
tem. The standard design for a focusing system fea-
tures a parabolic horn: an inner conductor shaped like
a parabola holding the magnetic field between inner and
outer conductors such that the length of the field at ra-
dius r is proportional to r2. Typical currents running
through such a horn are ∼ 105 A.

Conventional neutrino beams are produced containing
νµ and a small contamination of νe. To measure νµ → νe
transitions, we must distinguish between not only be-
tween electrons and muons but also between electrons
and π0, which constitute a large fraction of neutrino in-
teractions at & 100 MeV. Neutrinos that come from the
decay of muons present an entirely different challenge be-
cause we should also keep track of the muon charge—a
flip in the charge indicates νe → νµ—so it is crucial that
the muon charge is not misidentified. There are various
detectors used to observe neutrinos and we summarize
the most important ones for current and future experi-
ments in table (VI).

With beamlines and detectors in place, oscillation
probabilities are measured based on the following rela-
tion:

Nfar = Φνµσν` Pr[ν`|νµ]ε`Mfar +Bfar (96)

whereNfar is the number of events at a far detector, Φνµ
is the muon neutrino flux, σν` is the ν` cross-section, Mfar

is the far detector mass, ε` is the detector efficiency for
signal ` and Bfar is the predicted background events.

To reduce systematic uncertainties, it is conventional
to place an additional detector close to the neutrino
source, at a distance before oscillations can occur. Then
one predicts the number of events in the far detector
in terms of the ratio between the near and far detector
background events:

Bfar = Nnear
Sfar

Snear
(97)
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Experiment νµCC NC νe ντCC Signal F

K2K (2006) 0 1.3 0.4 0 1 0.6

MINOS (2006) 5.6 39 8.7 4.7 29.1 3.1

OPERA (2003) 1 5.2 18 4.5 10 1.6

T2K (2001) 1.8 9.3 11.1 0 103 9

NOvA (2004) 0.5 7 11 0 148 11.5

TABLE VII. Signal and background rates for typical long
baseline νe search. νCC, νe and NC refer to various possible
background events. F is the figure of merit for sensitivity to
oscillation events, defined as signal divided by the square root
of sum of signal and background events.

where Sj =
∑
` Φν`σν`ε``′Mj for j = near, far and ε``

describes the efficiency of identifying ν` as the signal ν`′ .
The most important information gathered from

accelerator-based experiments has been on νe → νµ os-
cillations. The standard exposure for optimal analysis of
electron neutrino appearance in a muon neutrino beam is
shown in table (VII). The signal rates indicated assume
sin2 θ13 = 0.1 and ∆m2 ∼ 2.75× 10−3 eV2.

F. Summary of current experimental data

The developments in neutrino oscillation experiments
in the last few years has given us a rough picture of the
parameters governing three-flavor oscillations: There are
two squared mass differences separated by a factor ≈
30, there are two large mixing angles (θ23, which could
be as much as 45◦, and θ12, which is large but almost
certainly smaller than 45◦, according to data known at
high significance level), and one mixing angle which must
be small (θ13). Present data is consistent with 2 possible
ordering of masses for neutrinos, typically parameterized
by the sign of ∆m2

13:

1. In the normal hierarchy (∆m2
13 > 0) the mass state

which contains predominantly νe has the smallest
mass;

2. In the inverted hierarchy (∆m2
13 < 0), νe is part of

a nearly degenerate doublet of mass states which
is separated from the lightest neutrino mass by
|∆m13|.

A global analysis of presently available neutrino oscil-
lation data is depicted in fig. (1) and summarized in
table (VIII).

V. MODELS INCORPORATING NEUTRINO
MASS

The Standard Model is based on the gauge group
SU(2)L × U(1)Y. But this only fixes the gauge bosons
in the theory—fermions and Higgs content are chosen
somewhat arbitrarily. The choice made in the Standard

Parameter Best fit 2σ 3σ

∆m2
12 (10−5 eV2) 7.6 7.3 – 8.1 7.1 – 8.3

|∆m2
13| (10−3 eV2) 2.4 2.1 – 2.7 2.0 – 2.8

sin2 θ12 0.32 0.28 – 0.37 0.26 – 0.40

sin2 θ23 0.50 0.38 – 0.63 0.34 – 0.67

sin2 θ13 0.007 ≤ 0.033 ≤ 0.050

TABLE VIII. Three-flavor neutrino oscillation parameters
from global analysis of solar, atmospheric, reactor (Kam-
LAND and CHOOZ) and accelerator (K2K and MINOS) ex-
periments. Includes best fit estimate and 2σ and 3σ ranges.

Model corresponds to massless neutrinos but evidence
for neutrino oscillations tells us neutrinos must possess
mass. If we stay with the same gauge group, it is still pos-
sible to conjecture extra fermions or Higgs bosons that
will predict massive neutrinos. This provides us with the
simplest extensions of the Standard Model and is usually
achieved via the see-saw mechanism.

Of course, one may choose to expand the gauge group
into something where symmetry breaking leads to the
Standard Model gauge. This is achieved in models at-
tempting to unify all forces at short distance, the so-
called grand unified theories, the most popular of which
involve SU(5), SO(10) and E6. Due to space limitations,
we will briefly cover only how neutrino masses are gen-
erated using the first two gauge groups.

For completeness, we mention that there is also a
class of Standard Model extensions that lead to non-
vanishing neutrino masses by introducing a symmetry
between bosons and fermions known as supersymmetry,
which is desirable because it provides a direct solution to
the hierarchy problem in the Standard Model.

A. The see-saw mechanism

One strange property of the Standard Model is that it
includes left and right chiral projections of all fermions
except neutrinos. Thus, it seems that a natural way to
extend it is to addN right-handed neutral fieldsN`R with
zero hypercharge and which are assumed to be SU(2)L

singlets. These fields have no interaction with gauge
bosons but will have non-trivial effects due to their other
properties.

The simplest model considers N`R to be the right-
handed components of a Dirac neutrino:

ν` =

(
ν`L
N`R

)
. (98)

The N`R fields give rise to extra mass terms in the La-
grangian

−LM =
∑
`,`′

M``′ν`LN`′R + (h.c.) (99)
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FIG. 1. Best ‘solar’ (left) and ‘atmospheric’ (middle) neutrino oscillation parameters determined from a combined analysis
of various neutrino data sources as of 2007. Also, a global analysis of the neutrino data established some constraints on θ13
(right). Image courtesy of [26].

where M``′ =
(
v/
√

2
)
f``′ is an N ×N mass matrix. In

general, M``′ isn’t diagonal in the flavor basis so that the
fields ν`L, N`′R do not correspond to physical fermion
fields.

The physical fields are obtained from the eigenvectors
of M . If we diagonalize M such that

U†MV = m, m = diag(m1, ...,mN ) (100)

then we can write

ν`,L =
∑
α

U`αvαL, ν`,L =
∑
α

U`αvαL. (101)

This allows us to rewrite eq. (99) as

LM =
∑
α

ναLmαναR + (h.c.), (102)

which shows that να are the mass eigenstates with mass
mα.

Neutrino mixing follows from eq. (4) for our Dirac neu-
trino here when we write it in terms of the mass eigen-
states:

−LC =
g√
2

∑
`

∑
α

`+Lγ
µU`αναLW

−
µ + (h.c.) (103)

which shows an expression analogous to quark mixing.
The problem with the Dirac neutrino model is that it

makes no restrictions on the size of f``′ , which conse-
quently means it doesn’t guarantee that neutrino masses
will be small. This can be fixed by considering instead
Majorana neutrinos. If we also introduce the fields N̂`L
conjugate to N`R, then we get extra bare mass terms

−LB =
1

2

∑
`,`′

B``′N̂`LN`′R + (h.c.), (104)

which with the identity

ν`LN`′R = N̂`′Lν̂`R (105)

leads to a mass matrix of the form

M =

(
0 M

M B

)
. (106)

The matrix M has 2N Majorana neutrinos in general
since M and B are N ×N matrices.

To see further implications, suppose we look at the
simplest case, N = 1. Then assuming M,B ∈ R, B > 0,
we can choose some rotation matrix

O =

(
cos θ − sin θ

sin θ cos θ

)
, tan 2θ =

2M

B
(107)

such that

OMOT =

(
−m1 0

0 m2

)
(108)

and

m1,2 =
1

2

(√
B2 + 4M2 ∓B

)
. (109)

This isn’t quite the diagonalization we want because of
the minus sign so if we introduce K = diag(i, 1) then we
can write

M = OTmK2O. (110)

Introducing column vectors(
n1L

n2L

)
≡ O

(
νL
N̂L

)
,

(
n1R

n2R

)
≡ K2O

(
ν̂R
NR

)
(111)

we get a mass term involving M in the Lagrangian that
can be reduced into

−LM = m1n1Ln1R +m2n2Ln2R + (h.c.) (112)

where n1 = −n̂1, n2 = n̂2, showing n1 and n2 are Majo-
rana neutrinos. In general, we get 2N Majorana neutri-
nos.
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This model now explains why active neutrino masses
should be small. Recall that M comes from Higgs cou-
pling and so it is natural to assume it is the same order of
magnitude as the other fermions in the same generation,
i.e. the charged leptons in the case of neutrinos. Suppose
B �M , then

m1 ≈
M2

B
, m2 ≈ B, (113)

from which it follows that m1 � M . Thus, if the active
neutrino masses are small, the sterile neutrino masses
have to be big in compensation. This is exactly the see-
saw mechanism at work.

However, there are cosmological arguments which limit
the mass of any stable neutrinos to . 1 eV. If we believe
ντ to be stable then we can take M ∼ mτ and find

B & 5× 109GeV. (114)

Comparing this to the weak scale of ∼ 102 GeV, we see a
huge gap in energy scales. This is known as the hierarchy
problem and it appears in any conventional grand unified
theory.

B. Expanding the Higgs sector

If no new fermions are included in the Standard Model,
then we only have two degrees of freedom that correspond
to uncharged fermions ν`L, ν̂`R, which if they have mass
must necessarily be Majorana particles. This also implies
B − L violation. B − L can be recovered is new Higgs
bosons are introduced to compensate for the B − L due
to neutrinos.

Given the lepton fields

ψL =

(
ν`L
`R

)
(115)

with antiparticles given by

ψ̂R = γ0Cεψ
∗
L (2, 1), ˆ̀

L = γ0C`
∗
R (1, 2) (116)

where ε = iσ2 is a 2 × 2 antisymmetric matrix, we can
form fermion bilinears that have non-vanishing B − L
quantum numbers:

ψLψ̂R (1, 2)⊕ (3, 2), ˆ̀
L`R (1,−4). (117)

The Higgs multiplets that can directly couple to these
bilinears to form gauge invariant Yukawa couplings are

1. triplet field ~∆ (3,−2),

2. single-charge singlet (1,−2), and

3. double-charge singlet (1, 4).

With B − L = −2 the electric charge of the triplet ~∆ is

~∆ =

 ∆0

∆−

∆−2

 (118)

and additional Yukawa coupling outside those already in
the Standard Model:

−LY =
∑
`,`′

f``′ψ`L
1√
2
~σ · ~∆ψ̂`′R + (h.c.) (119)

where ~σ denotes the vector of Pauli matrices.
The Higgs potential now involves both ~∆ and the usual

doublet φ. Let us assume that the parameters in this
potential are such that its minimum corresponds to

〈φ0〉 =
v2√

2
, 〈∆0〉 =

v3√
2
, (120)

which after symmetry breaking leads to the mass term

−LM =
∑
`,`′

ν`LM``′ ν̂`′R + (h.c.) (121)

where M``′ = v3f``′/
√

2.
Using the conjugate field we can rewrite eq. (119) as

−LY =
∑
`,`′

f``′ ψ̂
T
`RC

−1ε
1√
2
~σ · ~∆ψ̂`′R + (h.c.). (122)

In this form, it is clear that the bilinear involves ψ̂R twice
and therefore it must obey Fermi statistics. Note that
f``′ = f`′` makes the mass matrix symmetric.

The mass eigenvalues and eigenstates are obtained
from diagonalizing M . The couplings f``′ , however, are
unspecified so the definite pattern of neutrino mixing
can’t be uniquely determined. In this case, neutrinos
are light because v3 � v2. This can be seen from the
observation that since ∆0 couple to W and Z

ρ ≡ M2
W

M2
Z cos θW

=
1 + 2(v3/v2)2

1 + 4(v3/v2)2
(123)

where using experimental bounds on ρ:

v3

v2
< 0.07. (124)

Going back to the question of B − L symmetry, the
Yukawa coupling eq. (119) as such does not show B − L
violation. However, once this quantum number is car-

ried by ~∆, it is broken when ∆0 acquires a non-vanishing
vacuum expectation value. In fact, it breaks B − L by
2 units, exactly what is needed for generating the Majo-
rana mass terms.

Next we consider the second option: a model with a
single-charged singlet h− first proposed by Anthony Zee
in 1980 [29], which involves the Yukawa coupling

−LY =
∑
`,`′

f``′`Lψ̂`′Rh
− + (h.c.). (125)
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Because h has an electric charge, its vacuum expectation
value must vanish, leading to a prediction of massless
neutrinos. The situation changes, however, if there are
more than one Higgs doublets in the theory. For instance,
if there is a second doublet φ′ then the trilinear coupling

µφT εφ′h+ (h.c.) (126)

yields the B − L violation we want.
The mass terms are particularly simple if we assume

that only one of the Higgs doublets couples to leptons.
In this case,

M``′ = κf``′
(
m2
` −m′2`

)
(127)

where the coupling constant is f``′ = −f`′` so M is sym-
metric.

Interestingly, this model comes with a pattern of neu-
trino mixing, unlike the previous models discussed above.
If we define

tanα =
fµτ
feτ

(
1−

m2
µ

m2
τ

)
, τ =

feµ
feτ

m2
µ

m2
τ

cosα, (128)

then the mass matrix M in the flavor basis is

M = m0

 0 τ cosα

τ 0 sinα

cosα sinα 0

 (129)

where m0 = κm2
τfτe/ cosα. Diagonalization of M here

gives the physical masses; unfortunately, the predictions
of the model don’t agree with the most updated oscilla-
tion data.

The last option we consider is a model with a double-
charge singlet, which can have Yukawa couplings of the
form

−LY =
∑
`,`′

F``′ ˆ̀L`
′
Rk

+2 + (h.c.). (130)

The field k+2 has a B − L quantum number of 2 but it
turns out that no amount of additional Higgs doublets
will lead to the B − L violation needed to generate neu-
trino masses.

What is required is the addition of a single-charge
scalar of the same nature as h above [28]. With h− and
k+2, we have a trilinear coupling

µh−h−k+2 + (h.c.) (131)

which breaks the B − L symmetry. Neutrino masses are
generated in this scenario from 2-loop diagrams, which
give rise to a mass matrix

M``′ = 8µ
∑
`1,`2

m`1m`2f``1F`1`2f`′`2I`1`2 (132)

where

I`1`2 =

∫
d4p

(2π)4

∫
d4q

(2π)4

(
1

p2 −m2
`1

) (
1

q2 −m2
`2

)
×
(

1

p2 −m2
h

)(
1

p2 −m2
h

)(
1

(p− q)2 −m2
k

)
(133)

so that the eigenvalues of M are naturally small because
of the suppression factors in such two-loop integration
terms.

An interesting prediction from this model follows from
the asymmetry of f``′ : det(M) = 0 =⇒ m3 = 0 if there
are three generations. The third mass isn’t necessarily
zero because there are higher-order perturbation terms to
consider but at this level it already suggests that m3 �
m1,m2 for three neutrino mass eigenstates.

C. Grand unified theories

Evidence for new physics such as dark matter and
dark energy show some of the limitations of the Stan-
dard Model. Various attempts at extending it include
grand unification theories (GUTs) that imagine scenar-
ios wherein matter and energy are unified at some funda-
mental energy scale and where this overarching symmetry
is spontaneously broken at the low energy scales where
the Standard Model holds. Here we briefly examine how
GUTs incorporate neutrino masses in the two most pop-
ular grand unification groups, SU(5) and SO(10).

In the Georgi-Glashow SU(5) model, the Standard
Model gauge groups are combined into a single gauge
group SU(5). Fermions are assigned to 10 and 5 repre-
sentations that can be denoted by

F =


d̂1

d̂2

d̂3

e

ν


L

, T =


0 û3 −û2 u1 d1

−û3 0 û1 u2 d2

û2 −û1 0 u3 d3

−u1 −u2 −u3 0 e+

−d1 −d2 −d3 −e+ 0


L

(134)
where x̂ denotes the conjugate of x, e.g. ûL is the CPT-
conjugate state to the right-handed helicity state of the
up quark.

The breakdown of the gauge symmetry to SU(3)C ×
U(1)Q is achieved by two Higgs multiplets H ≡ 5 ,Φ ≡
24 with the vacuum expectation value of Φ is chosen so
that

〈Φ〉 = diag

(
V, V, V,−3

2
V,−3

2
V

)
(135)

where V is the unification scale obtained from unifying
the three gauge couplings at low energies.

If we write the gauge bosons of SU(5) as 1√
2

∑
a λ

aGa +
√

2
15B24 Z

Z−1 1√
2
~σ · ~W −

√
3
10B24

 (136)
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where

Z =

X
4
3
1 Y

1
3

1

X
4
3
2 Y

1
3

2

X
4
3
3 Y

1
3

3

 , Z−1 =

(
X
− 4

3
1 X

− 4
3

2 X
− 4

3
3

Y
− 1

3
1 Y

− 1
3

2 Y
− 1

3
3

)
(137)

we get that

M2
X = M2

Y =
25

8
g2V 2. (138)

The final stage to get to U(1)Q occurs via H:

〈H〉 =

(
0, 0, 0, 0,

v√
2

)T
(139)

which leads to

MW =
1

2
gv, MZ =

gv

2 cos θW
(140)

where θW is the Weinberg angle. With a single gauge
coupling constant, the unification scale is predicted to
correspond to

tan θW =

√
3

5
. (141)

However, it turns out that at the scale MZ , experimental
data show that the three gauge couplings don’t extrap-
olate to the same point at high energy scales. SU(5)
is not a viable GUT model unless there are more Higgs
bosons introduced, which would ruin the simplicity and
predictive power of the theory. Nonetheless, SU(5) has
proven to be an excellent training ground for understand-
ing generic features of GUT models.

The most general gauge-invariant Yukawa coupling in
the SU(5) model is

LY = h1T
T
ijC
−1F iHj + h2ε

ijklmTTijC
−1TklHm + (h.c.)

(142)
Once the Higgs boson H acquires a vacuum expectation
value, we get

Md = M ` = h1
v√
2
, Mu = h2

v√
2

(143)

where Mu,d are the quark masses matrices and M ` is for
charged leptons.

At this stage, neutrinos remain massless. To modify
the model to generate neutrino mass, a 15 -dimensional
Higgs boson Sij = Sji is included. The multiplet S allows
the coupling

L′Y = fF iTC−1FjS
ij + (h.c.) (144)

Under the Standard Model gauge group, S contains

the triplet scalar ~∆. Assigning a non-zero vacuum ex-
pectation to S,

〈S55〉 =
u√
2
' µSv

2

V 2
(145)

would naturally explain small neutrino masses when
µS ∼ O(V ).

The next symmetry used in GUTs is SO(10), first dis-
covered by Howard Georgi a few hours before finding the
SU(5) model in 1973, and independently developed by
Harald Fritzsch and Peter Minkowski in 1974. An ele-
gant aspect of SO(10) is that it contains the left-right
symmetric gauge group SU(2)L×SU(2)R×SU(4)C and
thus, it automatically contains a right-handed neutrino,
Furthermore, because quarks and leptons belong to the
same irreducible representation, neutrinos acquire masses
naturally through the same mechanism as the quarks and
other leptons.

The spinor representation of SO(10) is the 16 -
dimensional SO(10) which has a maximal subgroup
SU(4)C × SU(2)L × SU(2)R × D where D is a discrete
symmetry that essentially plays the role of charge conju-
gation on fermion fields. Known as D-parity, this symme-

try maps fL → f̂L, interchanging the (2, 1, 4) and (1, 2, 4̄)
sub-multiplets of the SO(10) spinor. It plays an im-
portant role in understanding neutrino mass in left-right
symmetric models.

Symmetry breaking is usually achieved with a combi-
nation of Higgs fields: choose 45H or 54H and then add
either 16H and 16H or 126H and 126H . Details are
too involved to present here so the interested reader is
referred to [31].

Now since 16 ⊗ 16 = 10 ⊕ 120 ⊕ 126 , the mass-
generating Higgs bosons must belong to 10 , 120 or 126
dimensional representations of SO(10). Fermion mass in
SO(10) originate from the Yukawa coupling

LY =
∑
a,b

fab10ψ
T
a BC

−1Γiψb10 i

+fab120ψ
T
a BC

−1ΓiΓjΓkψb120 ijk

+fab126ψ
T
a BC

−1ΓiΓjΓkΓlΓmψb126 ijklm + (h.c.)
(146)

where Γi and B are the SO(10) analogs of Dirac matrices
and the spinor conjugation matrix, respectively. Note
that fab10 and fab126 are symmetric while fab120 is symmetric.
At the unification scale Mu

ab = Md
ab = M `

ab = M0
ab.

Adding a 126 Higgs boson with a non-vanishing vac-
uum expectation value to its SU(5) singlet component
gives a Majorana mass to the right-handed neutrino:

LNRM = f126

(
MBL

g

)
NT
RC
−1NR (147)

where it follows that the corresponding term for the left-
handed neutrino is

LνLM = λf126
k2

MBL/g
νTLC

−1νL (148)

where k is the SU(2)L breaking scale.
This leads to light neutrino mass given by

mν ' λf126
k2

MBL/g
− 1

9
f10f

−1
126f10

k2

MBL/g
(149)
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which is just a different type of see-saw formula, where
mν → 0 as MBL is made very large.

Assuming f126 are roughly the same order of magni-
tude, it follows that

mν` ∼ O(1 eV ), ` = e, µ, τ. (150)

On the other hand, if the direct Majorana mass vanishes
(λ = 0) the model predicts, assuming mντ < 18 MeV,
that

mνµ ≤ 1.5 keV. (151)

VI. CONCLUDING REMARKS

Despite the successes of the Standard Model, the phe-
nomenon of neutrino oscillations presents the most con-
vincing evidence for the need to modify it, because mass-
less neutrinos can not oscillate. Put differently, observ-
ing neutrino oscillations imply neutrino masses cannot be

equal—specifically, this means they cannot all be zero.
Current experimental evidence suggests that if any neu-
trinos have non-zero mass, probably all of them do.

Experimental results show that the probability of a
neutrino changing type is related to the distance be-
tween its point of production to its point of detection,
with greater depletion for larger distances travelled. The
oscillation probability is also a function of the neutrino
masses and energy, and of the mixing angles, two of which
are suspected to be relatively large and one much smaller
than the other two.

Various phenomenological approaches have been pro-
posed in extending the Standard Model into a more
encompassing framework that incorporates neutrino
masses, where the models discussed here involve more
neutrinos, more Higgs bosons, or larger gauge symmetry
groups. The hope is that future experiments in reactors
and accelerators will achieve sub-percent precision for
testing the neutrino mass hierarchy and establish which
theory best describes the origin of neutrino mass.
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