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The main purpose of this note is to briefly review the analysis of the entanglement between modes
of a free Dirac field for observers that are in uniform acceleration relative to each other. As a slight
generalization of existing results, we consider quantum states diagonal in the generalized Bell basis
and consider mixed states with varying amounts of entanglement.

I. INTRODUCTION

In quantum information, entanglement serves as an
important resource for many computational tasks. Re-
cently, properties of entanglement in a relativistic setting
have been studied by several authors. The earlier anal-
yses used a single-mode approximation to show how the
entanglement between bosonic [1] and fermionic [3] field
modes is degraded from the point of view of a uniformly
accelerated observer. The canonical scenario considers
two parties, an inertial observer Alice and a uniformly
accelerated observer Rob, each assumed to possess a de-
tector sensitive to only one of two modes that are max-
imally entangled from an inertial perspective. In this
setting, we assume a continuum of Minkowski wavepack-
ets that are sufficiently peaked around a particular value
of Minkowski momentum for Alice or Unruh frequency
for Rob.

Ref. [2] shows that the single-mode approximation ac-
tually works only for certain family of states. They
demonstrate how the usual maximally entangled state
examined in the literature corresponds to a Minkowski
mode with frequency ω entangled with a specific type
of Unruh mode with Rindler frequency Ω, which can
be achieved with Minkowski wave packets with smearing
functions peaked according to some Fourier transform
constraints.

Of particular interest is the infinite acceleration limit,
which can be seen as describing a situation where Alice
falls into a black hole while Rob barely escapes through
eternal uniform acceleration. The results show that in
the bosonic case, the entanglement goes to zero in the
limit of infinite acceleration, and the rate of decay is in-
dependent of the choice of Unruh mode. In the fermionic
case, there is always some residual entanglement and this
minimum value depends on the Unruh mode used. The
analogy with the black hole scenario tells us that the
degradation is a consequence of a communication hori-
zon that causes Rob to lose information about the state
shared with Alice.

In this note, as an attempt to better familiarize our-
selves with the specific details of these results, we explore
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a small generalization by considering states with differ-
ent amounts of initial entanglement in the inertial setting.
We will consider states of the form

ρ =
∑
i

wi |φi〉 〈φi| (1)

where the basis states are given by

|φ1〉 = cosα |00〉+ sinα |11〉 ,
|φ2〉 = sinα |00〉 − cosα |11〉 ,
|φ3〉 = cosα |01〉+ sinα |10〉 ,
|φ4〉 = sinα |01〉 − cosα |10〉 . (2)

When α = π
4 , this is the Bell basis with |φ1〉 corre-

sponding to the Bell state used in the canonical scenario
in noninertial frames, and ρ represents a Bell-diagonal
state. Thus, we consider mixtures of states with the same
amount of arbitrary entanglement defined by α ∈ [0, π4 ].
In particular, we explore entangled states for Dirac field
modes [3], which allows us to use techniques in quan-
tum information that involve finite-dimensional density
matrices.

II. PRELIMINARIES

Suppose that Rob is a uniformly accelerated observer
in the (t, x) plane of Minkowski spacetime. It is appro-
priate to use Rindler coordinates to describe his frame.
Let ū = t − x and v̄ = t + x. Using the coordinate
transformation

t =
eaξ

a
sinh aτ, x =

eaξ

a
cosh aτ (3)

for a > 0 and −∞ < τ, ξ <∞, we get

t± x = ±e
a(ξ±τ)

a
. (4)

For the metric, we have

ds2 = dt2 − dx2 = dū dv̄. (5)

If we let u = τ − ξ and v = τ + ξ then

ds2 = e2aξdu dv = e2aξ(dτ2 − dξ2). (6)
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Thus, for the Rindler coordinates (τ, ξ), lines of con-
stant ξ are hyperbolae corresponding to world lines of
uniformly accelerated observers with proper acceleration
a.

In Rindler coordinates there are two regions called
wedges which correspond to x > |t| and x < |t|, referred
to as region I and II, respectively. Any uniformly ac-
celerated observer remains in either region I or II since
these represent causally disconnected regions in space-
time, with the lines ū = 0 and v̄ = 0 acting as event
horizons.

Consider a free Dirac field ψ in Minkowski space time,
which satisfies

iγµ∂µψ −mψ = 0 (7)

where m is the mass, γµ are the Dirac matrices, and ψ is a
Dirac spinor. In an inertial frame, Minkowski coordinates
xµ = (t, x) are typically used to describe such fields. We
can write ψ in terms of the positive and negative energy
solutions of the Dirac equation,

ψ =

∫
dk
(
akψ

+
k + b†kψ

−
k

)
(8)

where k serves as a shorthand label for the modes, in-
cluding energy and spin, that is,

ψ±k =
1√
2πω

φ±s e
±i(~k·~x−wt) (9)

where ω2 = m2 +~k2 and φs is a constant spinor with s =
{↑, ↓}. The mode functions satisfy the orthonormality
relations 〈

ψ+
k , ψ

+
j

〉
= δ(k − j) = −

〈
ψ−k , ψ

−
j

〉
,〈

ψ±k , ψ
∓
j

〉
= 0, (10)

where the inner product is given by

〈ψk, ψj〉 =

∫
dx ψ†kψj . (11)

The operators ak and bk are particle and antiparticle an-
nihilation operators, respectively, with anticommutation
relations

{ak, a†j} = {bk, b†j} = δkj (12)

and other anticommutators vanishing. The Minkowski
vacuum state |0〉 is defined by

ak |0〉 = bk |0〉 = 0. (13)

In Rindler coordinates, region I and II admit sepa-
rate quantizations, which leads to positive and negative
energy solutions ψ±k,I and ψ±k,II , respectively. Since the
Rindler metric is independent of τ , the solutions are of
the form eiωτφs(ξ).

With ω > 0, the mode solutions with time dependence
e∓iωτ represent positive-frequency solutions for region I
and II respectively since

∂τψ
+
k,I = −iωψ+

k,I , ∂−τψ
+
k,II = −iωψ+

k,II . (14)

The Rindler modes obey the orthonormality relations〈
ψ±k,µ, ψ

∓
j,ν

〉
= 0,〈

ψ±k,µ, ψ
±
j,ν

〉
= δµνδ(k − j), (15)

where µ, ν = I, II. Note that we distinguish Rindler
states and operators from Minkowski ones through the
labels identifying the Rindler wedge they belong to.

The Dirac field written in terms of Rindler modes is
given by

ψ =

∫
dk
(
ak,Iψ

+
k,I + b†k,Iψ

−
k,I + ak,IIψ

+
k,II + b†k,IIψ

−
k,II

)
(16)

where ak,µ, bk,µ with µ = I, II denote Rindler particle
and antiparticle operators. These operators satisfy the
usual Dirac anticommutation rules, i.e.,

{ak,µa†j,ν} = {bk,µb†j,ν} = δµνδ(k − j), (17)

and all other anticommutators vanish, including those
between different regions. The Rindler vacuum in regions
µ = I, II are given by

ak,µ |0〉µ = bk,µ |0〉µ = 0. (18)

The transformation between Minkowski and Rindler
modes is given by

ψ+
j =

∑
µ=I,II

∫
dk
(
αjk,µψ

+
k,µ + β∗jk,µψ

−
k,µ

)
. (19)

where the Bogoliubov coefficients are obtained by taking
the inner product of the Rindler mode functions with the
Minkowski mode ones, which with tan r = e−πΩ yields

αjk,I = eiπ/4
eiθΩ√
2πω

cos rδss′ , αjk,II = α∗jk,I ,

βjk,I = −eiπ/4 eiθΩ√
2πω

sin rδss′ , βjk,II = β∗jk,I , (20)

where ω is the energy of the Minkowski mode, Ω is the
energy of the Rindler mode, and θ is defined so that
Ω = m cosh θ and Ω2 = m2 + κ2.

With ak =
〈
ψ+
k , ψ

〉
, the Minkowski particle annihila-

tion operator in terms of the Rindler ones is

aj =
∑

µ=I,II

∫
dk
(
α∗jk,µak,µ + βjk,µb

†
k,µ

)
. (21)

To consider transformations between states, define the
Fock basis for each Dirac field mode to be

|k〉 = |k〉R |k〉L (22)
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with

|k〉R = |n〉+I |m〉
−
II ,

|k〉L = |n′〉−I |m
′〉+II , (23)

where ± denotes particle and antiparticle states. With
these basis states, we can write

aj =
1√
2πω

∫
dk (η∗ak,R + ηak,L) (24)

where η = eiπ/4eiθΩ and ak,R and ak,L are the Unruh
operators

ak,R = ak,I cos r − b†k,II sin r,

ak,L = ak,II cos r − b†k,I sin r. (25)

To find the Minkowski vacuum in this basis, consider the
ansatz

|0Ω〉R =
∑
n,s

f(n,Ω, s) |nΩ, s〉+I |nΩ,−s〉−II ,

|0Ω〉L =
∑
n,s

g(n,Ω, s) |nΩ, s〉−I |nΩ,−s〉+II , (26)

where ± labels particle and antiparticle modes, s labels
the spin, and |0〉 =

⊗
Ω |0Ω〉 is the Minkowski vacuum

expressed as a vacuum product state with

|0Ω〉 = |0Ω〉R |0Ω〉L . (27)

For Dirac fields, the Pauli exclusion principle reduces
the sum in Eq. (26) to just two terms each. Using the
anticommutation relations and the conditions for the Un-
ruh mode vacuum,

aΩ,R |0ω〉R = 0, aΩ,L |0ω〉L = 0, (28)

we can show that the Minkowski mode vacuum state |0Ω〉
is given by

|0Ω〉 =
(

cos r |0Ω〉+I |0Ω〉−II + sin r |1Ω〉+I |1Ω〉−II
)

⊗
(

cos r |0Ω〉−I |0Ω〉+II − sin r |1Ω〉−I |1Ω〉+II
)
. (29)

To simplify the notation, let

|nmpq〉 = |nΩ〉+I |mΩ〉−II |pΩ〉−I |qΩ〉+II . (30)

Then,

|0Ω〉 = cos2 r |0000〉 − sin r cos r |0011〉
+ sin r cos r |1100〉 − sin2 r |1111〉 . (31)

We apply the Unruh mode particle creation operator

a†k,U = qRa
†
Ω,R + qLa

†
Ω,L (32)

with |qR|2 + |qL|2 = 1 to create a Minkowski one-particle
state, which in shorthand notation reads

|1Ω〉+U = qR (cos r |1000〉 − sin r |1011〉) (33)

+ qL (sin r |1101〉+ cos r |0001〉) (34)

and can be obtained in a straightforward manner by ex-
pressing the Unruh operators in terms of the Rindler op-
erators.

III. MIXED-STATE ENTANGLEMENT OF
FERMIONIC MODES

We are interested in entangled states of the form

ρ =
∑
i

wiρi (35)

where
∑
i wi = 1 and ρi = |φi〉 〈φi| are basis states cor-

responding to

|φ1〉 = cosα |0ω〉 |0Ω〉U + sinα |1ω〉 |1Ω〉U ,
|φ2〉 = sinα |0ω〉 |0Ω〉U − cosα |1ω〉 |1Ω〉U ,
|φ3〉 = cosα |0ω〉 |1Ω〉U + sinα |1ω〉 |0Ω〉U ,
|φ4〉 = sinα |0ω〉 |1Ω〉U − cosα |1ω〉 |0Ω〉U . (36)
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FIG. 1. Log-neg plot for w1 = 1, a = π/4.
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FIG. 2. Plot of log-neg vs. r and w1, for qR = 1 and α = π/4.
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Tracing over region II, we get

ρA,I =
(
qLw3q

∗
Lc

2C2 + w1c
2C4 + qLw4q

∗
LC

2s2 + w2C
4s2
)
|000〉 〈000|+

(
w1c

2C2S2 + w2C
2s2S2

)
|001〉 〈001|

+
(
qRw3q

∗
Rc

2C2 + qRw4q
∗
RC

2s2 + qLw3q
∗
Lc

2S2 + w1c
2C2S2 + qLw4q

∗
Ls

2S2 + w2C
2s2S2

)
|010〉 〈010|

+
(
qRw3q

∗
Rc

2S2 + qRw4q
∗
Rs

2S2 + w1c
2S4 + w2s

2S4
)
|011〉 〈011|

+
(
qLw2q

∗
Lc

2C2 + w4c
2C4 + qLw1q

∗
LC

2s2 + w3C
4s2
)
|100〉 〈100|+

(
w4c

2C2S2 + w3C
2s2S2

)
|101〉 〈101|

+
(
qRw2q

∗
Rc

2C2 + qRw1q
∗
RC

2s2 + qLw2q
∗
Lc

2S2 + w4c
2C2S2 + qLw1q

∗
Ls

2S2 + w3C
2s2S2

)
|110〉 〈110|

+
(
qRw2q

∗
Rc

2S2 + qRw1q
∗
Rs

2S2 + w4c
2S4 + w3s

2S4
)
|111〉 〈111|+ σA,I + σ†A,I (37)

where c = cosα, s = sinα,C = cos r, S = sin r, and σnd is defined by the non-diagonal entries

σA,I =
(
−qLw3q

∗
Rc

2CS − qLw4q
∗
RCs

2S
)
|000〉 〈011|+

(
−qLw3cC

2sS + qLw4cC
2sS

)
|000〉 〈101|

+
(
w1q

∗
RcC

3s− w2q
∗
RcC

3s
)
|000〉 〈110|+

(
−w1q

∗
LcC

2sS + w2q
∗
LcC

2sS
)
|001〉 〈100|

+
(
w1q

∗
RcCsS

2 − w2q
∗
RcCsS

2
)
|001〉 〈111|+

(
qRw3cC

3s− qRw4cC
3s
)
|010〉 〈100|(

qLw3csS
3 + qLw4csS

3
)
|010〉 〈111|+

(
qRw3cCsS

2 − qRw4cCsS
2
)
|011〉 〈101|

+
(
−w1q

∗
LcsS

3 + w2q
∗
LcsS

3
)
|011〉 〈110|+

(
−qLw2q

∗
Rc

2CS − qLw1q
∗
RCs

2S
)
|100〉 〈111| . (38)

If we trace over region I, we get the reduced state of Alice and anti-Rob, which is given by

ρA,II =
(
qRw3q

∗
Rc

2C2 + w1c
2C4 + qRw4q

∗
RC

2s2 + w2C
4s2
)
|000〉 〈000|

+
(
qLw3q

∗
Lc

2C2 + qLw4q
∗
LC

2s2 + qRw3q
∗
Rc

2S2 + w1c
2C2S2 + qRw4q

∗
Rs

2S2 + w2C
2s2S2

)
|001〉 〈001|

+
(
w1c

2C2S2 + w2C
2s2S2

)
|010〉 〈010|+

(
qLw3q

∗
Lc

2S2 + qLw4q
∗
Ls

2S2 + w1c
2S4 + w2s

2S4
)
|011〉 〈011|

+
(
qRw2q

∗
Rc

2C2 + w4c
2C4 + qRw1q

∗
RC

2s2 + w3C
4s2
)
|100〉 〈100|

+
(
qLw2q

∗
Lc

2C2 + qLw1q
∗
LC

2s2 + qRw2q
∗
Rc

2S2 + w4c
2C2S2 + qRw1q

∗
Rs

2S2 + w3C
2s2S2

)
|101〉 〈101|

+
(
w4c

2C2S2 + w3C
2s2S2

)
|110〉 〈110|+ qLw2q

∗
Lc

2S2 + qLw1q
∗
Ls

2S2 + w4c
2S4 + w3s

2S4 |111〉 〈111|

+ τA,II + τ †A,II (39)

where

τA,II =
(
qRw3q

∗
Lc

2CS + qRw4q
∗
LCs

2S
)
|000〉 〈011|+

(
w1q

∗
LcC

3s− w2q
∗
LcC

3s
)
|000〉 〈101|

+
(
qRw3cC

2sS − qRw4cC
2sS

)
|000〉 〈110|+

(
qLw3cC

3s− qLw4cC
3s
)
|001〉 〈100|

+
(
qRw3csS

3 − qRw4csS
3
)
|001〉 〈111|+

(
w1q

∗
RcC

2sS − w2q
∗
RcC

2sS
)
|010〉 〈100|

+
(
w1q

∗
LcCsS

2 − w2q
∗
LcCsS

2
)
|010〉 〈111|+

(
w1q

∗
RcsS

3 − w2q
∗
RcsS

3
)
|011〉 〈101|

+
(
qLw3cCsS

2 − qLw4cCsS
2
)
|011〉 〈110|+

(
qRw2q

∗
Lc

2CS + qRw1q
∗
LCs

2S
)
|100〉 〈111| (40)

contains the upper triangular matrix entries of ρA,II , in the basis |lmn〉 = |l〉 |m〉−II |n〉
+
II .

To quantify the entanglement between Alice and Rob
in region I, we compute the logarithmic negativity of the
partially transposed matrix ρPTAR. The logarithmic nega-
tivity EN is an easy-to-compute entanglement monotone
that gives an upper bound to distillable entanglement is
defined as

EN (ρ) = log2 (2N + 1) (41)

where N is the sum of the negative eigenvalues of ρ, i.e.,

N (ρ) =
1

2

∑
i

(|λi| − λi) . (42)

Same as what was found before, the eigenvalues of ρPTAR
depend only on |qR| and not on any relative phase be-
tween qR and qL.

In the following graphs, we plot the logarithmic nega-
tivity for the case w3 = w4 = 0, w2 = 1−w1 for different
values of w1 and α. For Figs. 1 to 6, the blue, green, red,
and purple lines correspond to qR = 1.0, 0.9, 0.8, 0.7, re-
spectively. The dashed lines of the same color correspond
to the entanglement between Alice and Rob’s region II
mode. One only needs to consider the case 1√

2
≤ |qR| ≤ 1

since when |qR|2 < |qL|, the roles of the region I and II
modes are just reversed.
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Fig. 1 reproduces the result reported in Ref. [2], where
the fermionic modes of Alice and Rob are maximally en-
tangled in an inertial frame. Fig. 2 shows a plot of the
entanglement with w1 and r both varied, for qR = 1, with
w1 = 0 corresponding to the canonical case explored in
the literature. The contour lines shown are lines of con-
stant logarithmic negativity.
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FIG. 3. Log-neg plot for w1 = 1, a = π/8.
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FIG. 4. Log-neg plot for w1 = 1, a = π/16.
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FIG. 5. Log-neg plot for w1 = 2/3, a = 3π/16.

Qualitatively, we find the same behavior at different
levels of entanglement for the inertial bipartite state
for Alice and Rob: the entanglement gets degraded at
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FIG. 6. Log-neg plot for w1 = 3/4, a = π/8.

greater accelerations due to the Unruh effect at a rate
that depends on the choice of |qR|, with the most resilient
state obtained for |qR| = 1.

We also observe the conservation of total logarithmic
negativity for the state between Alice and Rob’s region I
mode, and Alice and Rob’s region II mode for |qR| = 1:
the sum of the two is always equal to the entanglement in
the inertial bipartite state. However, this compensating
levels of entanglement does not hold for |qR| < 1.

Quantitatively, how the amount of entanglement de-
creases with acceleration varies with intermediate lev-
els of entanglement in the inertial state, as we observe
when we vary α and w1. Nevertheless, for |qR| > 1/

√
2,

the logarithmic negativity essentially decreases monoton-
ically for the Alice-Rob region I modes, for any α or w1,
while we observe the characteristic dip and rise in the
logarithmic negativity of Alice-Rob region II modes.
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