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Summary

Quantum mechanics is contextual, that is, the outcome of a measurement does depend on

how that value is measured. This somewhat bizarre, non-classical feature is a consequence of

the Kochen-Specker theorem, which asserts that there is no non-contextual hidden variable

theory that reproduces quantum theory.

Contextuality is a property of quantum systems with Hilbert spaces of d > 2, as it can be

shown that a consistent non-contextual assignment of values is possible for qubits. Contex-

tuality via the Kochen-Specker theorem also serves as a precondition for secure quantum key

distribution in EPR-type protocols such as E91 and BBM92. In these cryptographic schemes,

security is proven by violations of inequalities that also contradict assumptions in local realistic

theories of the Kochen-Specker type.

Device-independent security from contextuality is also demonstrated by considering a dis-

tributed box of Peres-Mermin observables for the Kochen Specker theorem. The security of the

corresponding key distribution protocol is certified by checking for not-too-strong violations

of Bell inequalities.
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1 Introduction

One of the landmark applications of quantum mechanics is quantum cryptography [1], where quantum

resources are used by Alice and Bob in order to obtain a shared secret key, which they can later employ

for encoding messages protected from any potential eavesdropping attack from Eve. The unconditional

or information-theoretic security of quantum cryptographic protocols rests on the validity of physical

laws that dictate several key properties of quantum systems [17]:

• indeterministic measurement outcomes for individual systems;

• complementarity, which implies the incompatibility of measuring non-commuting observables;

• coherent superpositions of classically mutually exclusive states;

• value indefiniteness and contextuality, as attested in the theorems by Bell, Kochen, and Specker,

among others; and

• entanglement, with the ability of obtaining stronger-than-classical correlations.

The first quantum key distribution scheme, the famous BB84 protocol [2], was developed by Charles

Bennett and Gilles Brassard. BB84 is based on the fundamental quantum feature that mutually non-

orthogonal states are not perfectly distinguishable. This important property is a consequence of the

no-cloning theorem. A proof of the theorem demonstrates that any linear cloning machine will be

successful if and only if it generates copies of a single known state or any set of orthogonal states.

Because quantum states include coherent superpositions, an arbitrary quantum state can’t be cloned

exactly. Therefore, Eve is not allowed to just create an extra copy of the quantum information Alice

transmits to Bob. Eve can attempt to measure the signals transmitted by Alice through an intercept-

resend attack of the quantum channel but each measurement she performs leaves a noticeable trace

in the signals received by Bob, errors which Alice and Bob can reliably detect during classical post-

processing. Thus, BB84 is secure because of the unavoidable trade-off between information gain and

state disturbance.

Artur Ekert independently came up with a quantum key distribution protocol [3] that utilizes a

maximally entangled qubit pair for the signal source. Alice and Bob check violations of Bell inequalities

to see if Eve is present in the system. His seminal paper highlights two important ideas for cryptography:

• that quantum nonlocality is useful for generating a secure key, and

• that entanglement can be used to illustrate the compromise between gaining information about

a state and disturbing it via measurement.

The latter concept has basically spawned the vast majority of quantum key distribution protocols

that have been established. Only after the pioneering paper of Jonathan Barrett, Lucien Hardy and

Adrian Kent [4] did the former concept became more appreciated and used for the latest generation

of cryptographic protocols, those with so-called device-independent security [5]. Device-independent

cryptography assumes that devices can be malicious and therefore should not be trusted by Alice and

Bob. Two general approaches are involved: either one begins with the assumption that superluminal

signalling is impossible, or one just assumes that quantum mechanical laws are valid without specifying

models for Alice’s signal source or Bob’s measurement apparatus. In any approach, security is confirmed

solely through measurement statistics.

In this project, generating a secret cryptographic key from contextuality is explored. The first

two sections shows the significance of contextuality under the framework of hidden variable models

for quantum theory, leading to a celebrated result in quantum foundations, the Kochen-Specker theo-

rem. The next two sections demonstrate some indirect roles played by contextuality in quantum key

distribution protocols. The main result on security from contextuality appears in Section 6.

1



2 Hidden variables and contextuality

Quantum theory has the peculiar feature that states provide only a statistical description of physical

systems, reflected in the probabilistic nature of measurement outcomes. A natural conclusion from this

would be that quantum mechanics is incomplete, in the sense that the theory may be supplemented with

some additional components so that the resulting picture fits more closely with our classical intuitions.

Recall that in classical mechanics, the state ω of a system is associated with a point or region in

phase space Ω, typically that of position and momentum, i.e.,

ω = (x, p). (1)

Some properties of the system such as mass or charge stays constant while others, called dynamical

variables, change with time. For each dynamical property A, there is a mapping

fA : Ω→ R (2)

such that observable A has value fA(ω) if the state is ω. Time evolution for a classical state is given

by Hamilton’s canonical equations:

dx

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂x
. (3)

The key idea is that a system’s properties can be ascribed deterministic values. A classical state is fully

specified by listing down all relevant properties, something which seems impossible to do in quantum

mechanics due to the intrinsic randomness of individual measurements.

In order to recover some semblance of classical determinism, the standard approach is to introduce

a hidden variable model for quantum theory.

2.1 The philosophy behind hidden variables

Despite the many successes of quantum mechanics in explaining atomic phenomena, there is still some

ongoing debate on the philosophical implications of its mathematical formalism. The problem lies in

the fact that some paradoxical situations arise that are inconsistent with what one would expect to

happen classically. Various attempts have been made to interpret quantum theory, some approaches

which treat the quantum state as a state of knowledge while others consider it to be objectively real.

In the latter situation, the hope is that a hidden variable reconstruction of quantum mechanics will

allow for an essentially classical description of quantum systems.

A hidden variable model postulates that beneath the measurable quantities dealt with by the theory,

there are other quantities inaccessible to measurement but whose values dictate individual outcomes

obtained when measuring observables. The probabilistic outcomes are realized as average values of

observables over hidden variables with deterministic values. In the papers of John Bell [6], Simon

Kochen and Ernst Specker [7], they address the question of whether hidden variables can be fitted into

quantum mechanics. Whether the hidden variables are contingently inaccessible or always hidden in

principle is an independent issue that will not be relevant to us here.

What exactly does one wish to achieve with hidden variables? The foremost motivation behind

hidden variables is to recover the notion of value definiteness [9], which is described as follows:

Definition 1 (Value definiteness). Every physical observable of a quantum system has a definite value

at all times.
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Note that value definiteness is a prominent feature of classical physics. Aside from the fact that

this seems like a nice property to also have in quantum mechanics, value definiteness is intimately

connected to the philosophy of realism, here specifically for properties of a system. In contemporary

philosophy, realism is the belief in the existence of certain objects independent of our thoughts, beliefs,

or conceptions about them. A realist will typically profess to three fundamental beliefs [8]:

(a) Reality consists of everything that does exist. (This is meant to distinguish ontological or physical

existence from Platonic realism.)

(b) Reality is independent of any act of observation.

(c) Some of the features of reality are accessible to our knowledge.

For scientists, realism is an attractive ideology because it agrees with the prevailing perception that

science is more than just the mere accumulation of facts and observational data. Almost any scientist

believes that a most crucial aspect of his profession involves explaining why nature behaves the way

that it does, and the most straightforward way to do so is to contend that science explains objective

reality. If properties are real, then any attempt to measure it merely reveals a pre-existing value, one

that would be present whether or not any attempt has been made to measure it.

To make it concrete that property values are independent of measurement, a second assumption is

typically introduced, called non-contextuality.

Definition 2 (Non-contextuality). A quantum observable has a value independent of how that value

is eventually measured.

This means that if a system possesses a given property, it does so independently of possessing other

values pertaining to other arrangements. Thus, both assumptions incorporate the basic idea of physical

reality existing independently of it being measured.

The result by Kochen and Specker show that a contradiction occurs when one supposes value

definite, non-contextual hidden variables for quantum mechanics. One is logically forced to renounce

either value definiteness or non-contextuality. But because the purpose of hidden variables is to retain

some aspects of classical realism, the question then becomes, how do you come up with a consistent

story for quantum mechanics that is value-definite but contextual? This is what generates substantial

philosophical interest in the consequences of the Kochen-Specker theorem.

2.2 Constraints for hidden variable models of quantum theory

A fundamental doctrine in standard quantum mechanics states that a measurement does not simply

uncover the pre-existing value of a measured property [11]. Rather, the act of measurement itself is

supposed to create the outcome obtained in the measuring device. Most physicists simply accept this to

be an empirical fact confirmed by the many experiments involving quantum systems. However, people

in quantum foundations are interested in exploring this question further, trying to figure out whether

the unpredictability in measurements is an epistemic or ontological constraint, that is, whether there

are hidden variable models that account for the indeterminacy at a deeper level of reality or whether

measurement outcomes are inherently random.

In his book on quantum theory [10], John von Neumann provided the first restrictions on the sort

of hidden variable models one should allow. However, his ‘no-go’ theorem was later severely criticized

for being ‘silly’ or too restrictive. In 1964, Bell himself rediscovered von Neumann’s argument and

developed more reasonable constraints on hidden variables, revolving around the concept of locality.

Bell’s theorem demonstrates that the local hidden variables necessitates some correlation conditions

which are violated by measurements performed on entangled quantum systems. Further work by Bell in
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1966 [6], and independently by Kochen and Specker in 1967 [7], showed that separate from the issue of

non-locality, any hidden variable model must be contextual if it is to properly account for incompatible

quantum observables. In order to describe the Kochen-Specker theorem, it is useful to first discuss

some general characteristics of a hidden variable theory.

Quantum mechanics asserts that given a state |ψ〉 the probability of getting a particular outcome

aj when measuring observable A =
∑
j ajAj is provided by the Born rule

p(j) = 〈ψ|Aj |ψ〉. (4)

Hidden variables entertain the possibility that the results of a measurement are deterministic by asso-

ciating the quantum state with an ensemble of systems where each member of the ensemble does have a

specific value for every observable. The usual quantum mechanical rules that dictate the statistics of a

measurement then stem from an averaging effect over some concealed attribute of individual members

in an ensemble. This means that the uncertainty principle is a restriction not on the possible values

of complementary properties of a system but rather is a limitation on the types of ensembles possible

to prepare from individual systems due to disturbance effects from the state-preparation process. A

physicist trained in standard quantum mechanics will be skeptical and dismissive of such a possibility

but will realize that the mathematical formalism by itself does not necessarily preclude such a scenario.

A no-go theorem for hidden variables attempts to provide a refutation of the situation described above,

by making a few reasonable assumptions on how to make hidden variables self-consistent.

In the earlier example, the case of a single property of a system with state |ψ〉 was considered.

The more general situation involves a set of mutually commuting observables. Quantum theory tells

us that these observables can be measured simultaneously, giving a joint probability distribution for

the value of each observable. Since every observable is associated with a Hermitian operator and the

possible outcomes of measuring it is given by its eigenvalues, then it is reasonable to think that a

similar restriction extends to compatible observables. For instance, suppose there is a commuting set

of observables A,B,C which obeys the functional identity

f(A,B,C) = 0 (5)

then the set of values v(A), v(B), v(C) of A,B,C also satisfies a similar relation:

f(v(A), v(B), v(C)) = 0. (6)

Quite remarkably, the Kochen-Specker theorem shows that one arrives at a counterexample just by

considering these constraints.

3 The Kochen-Specker theorem

Early generations of quantum mechanics practitioners believed that it was impossible to construct

hidden-variable theories due to a proof by von Neumann [10]. His claim starts with a simple consequence

of eq. (5) and (6). If two observables A and B commute, then the value of C = A+B must obey

v(C) = v(A) + v(B). (7)

Von Neumann argued that eq. (7) should hold for any hidden variable theory even when A and B don’t

commute. But non-commuting variables don’t have simultaneous eigenvalues, meaning they can’t be

measured together and making such a constraint unreasonable. Note that for ensemble described by
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state |φ〉,
〈φ|C|φ〉 = 〈φ|A|φ〉+ 〈φ|B|φ〉. (8)

However, this does not necessarily imply that it must hold for individual systems. Bell showed that a

hidden-variable model is possible if one constrains only such expectation values. The Kochen-Specker

theorem essentially corrects the defect in von Neumann’s argument, and thus strengthens the case

against hidden variable theories insofar as they assume eq. (6) holds only for sets of observables which

are all mutually compatible. Later, it is shown that, at least for a certain class of deterministic hidden

variable theories, such a special rule for commuting observables is, in fact, unnecessary.

3.1 The original argument by Kochen and Specker

The example considered by Kochen and Specker examines the observables for the angular momentum

components for a particle of spin-1. The relevant observables are the squares of the components of

the spin S2
x, S

2
y , S

2
z along orthogonal directions x, y, z. These observables have eigenvalues 0 or 1 (they

are projectors) since each spin component of an s = 1 particle have values 0,1 or -1. The quantum

mechanics of spin also tells us that the sums of squared spin components along orthogonal directions

must obey

S2
x + S2

y + S2
z = s(s+ 1) = 2. (9)

Observe that {S2
x, S

2
y , S

2
z} forms a mutually commuting set.

Suppose one is provided with a set of directions containing different orthogonal triples along with

its associated squared spin components. Since each triple of rays involve compatible observables, they

can be simultaneously measured. Any such measurement yields a combination of two values of 1 and

one value of 0, in order to satify eq. (9). At first glance, it would appear that it is possible to assign a

value of 0 or 1 to all such triples of rays that involve orthogonal projectors. However, for dimensions

three (or larger), it is possible that two different orthogonal triples share a common observable, e.g.

{S2
v , S

2
w, S

2
x} and {S2

x, S
2
y , S

2
z} can be both compatible sets. (10)

A consistent assignment of 0s and 1s should assign a fixed value to a particular direction. Kochen and

Specker showed that this, in fact, is not possible for a particular set of 43 orthogonal triples constructed

using 117 rays.

An explicit statement of the theorem goes as follows: [9]

Theorem 1 (Kochen-Specker Theorem). Let H be a Hilbert space of dimension d = 3. There is a set S

of observables on H, containing N elements, such that the following two assumptions are contradictory:

1. All N members of S simultaneously have values, that is, they are unambiguously mapped onto

some real numbers (designated by v(A), v(B), v(C), ... for observables A,B,C, ...).

2. The values taken by observables in S conform to the following constraints:

• If A,B,C are all compatible and C = A+B, then v(C) = v(A) + v(B).

• If A,B,C are all compatible and C = AB, then v(C) = v(A)v(B).

The first assumption corresponds to the condition of value-definiteness. The second assumption

corresponds to functional identity constraints for commuting observables (generally called the sum rule

and the product rule, respectively) and is a consequence of non-contextuality.

The Kochen-Specker result in R3 can be viewed as a solution to the coloring problem on the surface

of a sphere. For example, if the color green is used to denote 0 and the color red to denote 1, this means

that the surface of a sphere cannot be colored with red and green such that for every orthogonal triple
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Figure 1: Three dimensional version of the orig-
inal Kochen-Specker diagram. [Image reproduced
from A. Cabello, Fundamentals Problems in Quan-
tum Physics, p.45. [14]]

of points on the sphere (which specify three orthogonal directions in space), one and only one point is

green while the other two are colored red. The impossibility of such a coloring of the sphere reflects a

topological property which shows that two points of different colors can’t be arbitrarily close to each

other if they are to satisfy the functional identity constraint. The actual steps in the proof given by

Kochen and Specker is quite complicated and not very illuminating so the details are omitted. Fig. (1)

shows the N = 117 directions used by Kochen and Specker in their proof. The diagram contains 43

triangles representing the orthogonal triples of points yielding a uncolorable set. Note that although

the proof uses observables for d = 3, it also applies for d > 3 because any higher-dimensional Hilbert

space will contain a three-dimensional subspace where similar sets of directions and observables can be

selected.

The Kochen-Specker result can also be thought of as a corollary of Gleason’s theorem [12]. Gleason’s

theorem shows that the set of quantum states is complete, in the sense that all possible probability

measures definable on the set of quantum propositions represented by Hilbert space projection operators

{Eα} are generated by density operators ρ of pure or mixed states according to the Born rule:

p(α) = tr {ρEα} . (11)

The Kochen-Specker theorem follows from considering a spectral decomposition of ρ and attempting

to assign non-contextual values to every projector in that decomposition.

3.2 Simpler proofs of the Kochen-Specker theorem

Although the Kochen-Specker theorem can be proven for d ≥ 3, two more elegant proofs were obtained

by considering directions in four dimensions. First, let’s examine the proof by Cabello, et al. [13] that

uses 18 real vectors.

It is possible to think of the assignment of values to compatible observables (projectors) which are

members of different sets (bases) as a set of propositions (which is either yes/no) belonging to different

contexts. For example, consider the set P of orthogonal vectors

P = {|1〉, |2〉, |3〉, |4〉} = {(0, 0, 0, 1), (0, 0, 1, 0), (1, 1, 0, 0), (1,−1, 0, 0)} (12)

where we omit normalization factors since they are unimportant in the proof. Each vector has a

corresponds to a projection operator, which becomes the relevant observable taking values 0 or 1.

The set P forms a complete basis for H = R4, which also means that the corresponding (orthogonal)
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Figure 2: 18-vector proof of the Kochen-Specker theorem. Each row of vectors u1, u2, u3, u4 form a basis for R4

and corresponds to a set of orthogonal projectors that sum to the identity. Each vector appears exactly twice in the
nine bases, as indicated by the color shading. Therefore, any value assignment of 0s and 1s to all vectors will yield
an even sum for all bases, which contradicts the fact that there are an odd number of bases.

projectors add up to the identity matrix, i.e. let Pi = |i〉〈i| be the projector associated with vector |i〉,
then

P1 + P2 + P3 + P4 = 1l4. (13)

In the language of propositions, the identity matrix corresponds to the trivially true statement, since

for any decomposition of the identity, at least one of the elements must hold. Thus, according to the

functional identity rule for compatible observables,

v(P1) + v(P2) + v(P3) + v(P4) = 1 (14)

where one of the values v(Pj) is 1 while the rest are zero. Cabello’s Kochen-Specker proof uses the

following nine ‘interlocking’ bases to arrive at a contradiction:

v(0, 0, 0, 1) + v(0, 0, 1, 0) + v(1, 1, 0, 0) + v(1,−1, 0, 0) = 1,

v(0, 0, 0, 1) + v(0, 1, 0, 0) + v(1, 0, 1, 0) + v(1, 0,−1, 0) = 1,

v(1,−1, 1,−1) + v(1,−1,−1, 1) + v(1, 1, 0, 0) + v(0, 0, 1, 1) = 1,

v(1,−1, 1,−1) + v(1, 1, 1, 1) + v(1, 0,−1, 0) + v(0, 1, 0,−1) = 1,

v(0, 0, 1, 0) + v(0, 1, 0, 0) + v(1, 0, 0, 1) + v(1, 0, 0,−1) = 1,

v(1,−1,−1, 1) + v(1, 1, 1, 1) + v(1, 0, 0,−1) + v(0, 1,−1, 0) = 1,

v(1, 1,−1, 1) + v(1, 1, 1,−1) + v(1,−1, 0, 0) + v(0, 0, 1, 1) = 1,

v(1, 1,−1, 1) + v(−1, 1, 1, 1) + v(1, 0, 1, 0) + v(0, 1, 0,−1) = 1,

v(1, 1, 1,−1) + v(−1, 1, 1, 1) + v(1, 0, 0, 1) + v(0, 1,−1, 0) = 1. (15)

Observe that every vector appears twice on the left-hand side. This means that however the values 0
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Figure 3: Peres-Mermin example of the Kochen-
Specker theorem. Each point represents one of the
nine observables. Triangles connect points which
are mutually commuting. The shaded triangle cor-
responds to the last column of observables in (16),
which has product -1. [Image reproduced from
A. Cabello, Fundamentals Problems in Quantum
Physics, p.45. [14]]

and 1 are distributed, the sum of all terms on the left-hand-side must be even. However, since there are

nine equations, the sum of all terms on the right-hand-side is necessarily 9, which is odd. Therefore,

assigning yes/no answers to all propositions can’t be done independent of context. The nine bases are

also displayed in fig. (2).

Another proof that will become crucial in a later discussion about acquiring a secret key from the

Kochen-Specker paradox is often attributed to both Asher Peres and David Mermin [11]. It involves

the following nine observables constructed from composing two spin-1/2 systems:

σ
(1)
x σ

(2)
x σ

(1)
x σ

(2)
x

σ
(1)
y σ

(1)
y σ

(1)
y σ

(2)
y

σ
(1)
x σ

(2)
y σ

(1)
y σ

(2)
x σ

(1)
z σ

(2)
z

(16)

Since these are Pauli operators for two independent subsystems 1 and 2, they satisfy

[σ(1)
a , σ

(2)
b ] = 0, σ(i)

a σ
(i)
b = δab + iεabcσc, i = 1, 2; a, b, c = x, y, z. (17)

A careful examination of the observables in eq. (16) reveals the following:

1. The observables in each of the three rows and columns mutually commute. This is immediately

obvious for the first two rows and columns. It is true for the last row and column because of a

pair of anti-commutations that cancel each other.

2. The product of the observables in the last column is -1. The product of all other columns and all

rows is -1.

3. Since the values assigned to compatible observables must obey functional identities satisfied by

the observables themselves, the product rule in (2) must be followed.

But (3) is impossible to satisfy since the row identities require the product of the nine observables to be

1 whereas the column identities imply that the product should be -1. This concludes the Peres-Mermin

proof. A proposed diagram for the Peres-Mermin proof is depicted in fig. (3).

3.3 Proposed experimental tests for contextuality

The differences between the proof of Bell’s theorem and Kochen-Specker theorem lead to the question

of what is the connection between them. In a later section, we will show how certain assumptions
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Figure 4: A diagram for observables to
test the Kochen-Specker theorem experi-
mentally. Each dot represents a projec-
tor onto the vector vij. The sides of the
regular hexagon and the three rectangles
in the middle connect orthogonal projec-
tors.

of a deterministic hidden variable theory implies an essential equivalence in the consequences of both

results. For the meantime, our interest lies on whether experimental tests similar to Bell’s can be

made for the Kochen-Specker theorem, or if they are even possible in the realm of finite measurement

precision.

Adan Cabello proposed the following inequality as the Kochen-Specker equivalent for Bell-type

experiments [15]: Suppose that Aij is an observable with eigenvalues ±1. Two observables Aij and Akl

commute if they share a subscript index (e.g., j = k or i = l, etc.) Denote 〈AijAklApqArs〉 to be the

average of the products of the indicated observables. Then according to any non-contextual hidden-

variable theory with definite values for observables Aij , the following inequality must be satisfied:

− 〈A12A16A17A18〉 − 〈A12A23A28A29〉 − 〈A23A34A37A39〉 − 〈A34A45A47A48〉 − 〈A45A56A58A59〉

−〈A16A56A67A69〉 − 〈A17A37A47A67〉 − 〈A18A28A48A58〉 − 〈A29A39A59A69〉 ≤ 7. (18)

The proof is rather straightforward: Define some parameter β to be equal to the left-hand-side of the

inequality. A brute-force calculation of all possible values of β will yield a maximum of 7; thus, 〈β〉 ≤ 7.

To measure β, subsets of compatible observables are measured on different sub-ensembles prepared in

identical states, since the inequality holds for averages over each sub-ensemble. In contrast to Bell

experiments that assume independence of space-like separated measurements, here our assumption is

that the results will be independent of compatible measurements. The inequality (18) is clearly violated

by any quantum state in a four-dimensional Hilbert space if we choose the observables to be

Aij = 2|vij〉〈vij | − 1l, (19)

where the vectors |vij〉 are defined in fig. (4). The observables are nothing more than the projectors

for the 18 vectors forming nine bases in Cabello’s proof of the Kochen-Specker theorem. Quantum

mechanics predicts that the left-hand-side of eq. (18) must be 9 in any state.

The inequality can be tested experimentally as long as sequential compatible measurements are

indeed compatible [16]. One way to achieve this would be to convert local contextuality constraints

into quantum nonlocality conditions [33], after which, some Bell-type inequality can be checked.
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Figure 5: BB84 with chocolate balls. Quantum states are replaced by chocolate balls carrying two complementary
bit values, here colored red and blue. Alice and Bob can only read off the value for the colored eyeglass they choose.

4 Non-contextual cryptography: BB84 with chocolate balls

It is rarely acknowledged that, when it comes to contextuality, there is definitely a difference between

two and three dimensional Hilbert spaces [17]. This difference can be explained easily in terms of

conjugate bases: different qubit bases are fully disjoint and separated (trivially sharing only the origin)

whereas for higher dimensional spaces, various orthogonal bases can share common elements. It is

the interlocking of various bases that allows for both Gleason’s theorem [12] and the Kochen-Specker

theorem [7] to be true. Thus, the contextuality of quantum mechanics holds only if the quantum

system in question is at least three-dimensional. In particular, a non-contextual hidden variable model

is possible for qubits. To illustrate this, we use the BB84 protocol as an example and demonstrate that

one can provide a quasi-classical picture of what goes on.

Recall that in BB84 [2], Alice randomly selects signals from two conjugate bases {|0〉, |1〉} and

{|+〉, |−〉}, assigning vectors from each basis the bit value 0 or 1. Alice sends her signals one at a time

to Bob and Bob measures the signals either in one of the two bases. After transmission, Alice and

Bob talk in an authenticated classical channel and compare bases that they used. They discard those

results where their bases disagree and those that remain will have matching bit values, which form a

random bit string and can be subsequently used as a cryptographic key.

In BB84 with chocolate balls [18], the same steps are used except that instead of using quantum

signals, one envisions a source of chocolate balls painted with two symbols having two possible values

(0 or 1) in two colors (red or blue), many copies of which are randomly distributed in an urn (this is

actually an example of the so-called generalized urn models [19]). The idea behind the colored symbols

is that only one of the two symbols is accessible–only the one with a color that matches that of a viewing

eyeglass. In essence, choosing one of the colors decides which one of two complementary observables

‘red’ or ‘blue’ is measured. The bit value is then given by the value associated with the color selected.

The revised protocol runs in the following manner:

1. Alice selects at random a colored eyeglass.

2. Alice draws a chocolate ball from the urn and uses her chosen eyeglass to read off the bit value

and records it in her lab manual.
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3. Alice then sends the chocolate ball over to Bob.

4. Bob also randomly chooses a colored eyeglass with which he measures a bit value from the

chocolate ball.

5. After transmission, Alice and Bob compare eyeglasses used and keep those results where their

choices agree. The corresponding bit string can be used as a secure random key.

These steps are illustrated in fig. (5).

The lesson from the example above is this: since the dimension of Hilbert space determines the

number of mutually exclusive outcomes in quantum mechanics, a necessary condition for a quantum

system to be protected by contextuality is that the quantum system must have at least three possible

orthogonal states [17]. Of course, for the purposes of cryptography it might not mean much because

the BB84 protocol is still protected by complementarity. Also, any quantum cryptographic protocol

that uses three [20] or more orthogonal quantum states is implicitly protected by contextuality.

5 Quantum key agreement and Kochen-Specker realism

Bell’s theorem [21] states that a local hidden variable theory produces correlations which must satisfy

some natural constraints often expressed in terms of inequalities (sometimes referred to as the Bell-

Clauser-Horne inequalities). Bell goes on to show that such a local realistic model fails to reproduce

all statistical predictions made by quantum mechanics. The usual way to demonstrate the violation

is to check the correlations on outcomes obtained from measuring entangled systems. In Ekert’s E91

protocol, the security of the scheme is guaranteed by violations of such Bell inequalities.

Koji Nagata stated that the violation of Ekert’s inequality and also the violation of a similar

inequality in the EPR version of the BB84 protocol called the BBM92 scheme (by Charles Bennett,

Gilles Brassard, and David Mermin) constitutes a denial of non-contextual hidden variables, or Kochen-

Specker realism, for the scheme [25]. Therefore, another link between no-go theorems and success in

quantum key distribution can be made via the Kochen-Specker theorem.

5.1 Deterministic hidden variables and Kochen-Specker realism

To establish the connection between quantum cryptographic security and no-hidden-variable proofs, it

is instructive to first specify the details of a deterministic (or factorizable stochastic) hidden variable

model [22, 23, 24]. In particular, the following result is desired: Kochen-Specker realism is equivalent

to a situation where all quantum observables commute [26].

Denote a quantum system with state ρ to be Q = Q(H, ρ,Θ) where the Hilbert space H specifies

its dimension and Θ corresponds to a set of observables for Q.

Let Λ = Λ(Ω,Σ(Ω), µ) be a classical probability space, where Ω is a nonempty set, Σ(Ω) is a Boolean

algebra of subsets of Ω and µ is a probability measure on Σ(Ω).

A deterministic hidden variable model for quantum system Q makes one or more of the following

assumptions

(a) Given ω ∈ Ω, A ∈ Θ there is a mapping f from (ω,A) ∈ (Ω,Θ) to R such that

fω(A) = f(ω,A) = a, where A|a〉 = a|a〉, (20)

that is, the function f yields an eigenvalue a of A.
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(b) For any two commuting observables A,B ∈ Θ, the mapping f is such that

f(ω,A+B) = f(ω,A) + f(ω,B). (21)

(c) The probability measure µ gives the marginal probabilities for observable A, i.e., for any real

Borel set S, µ is such that

tr {ρΠA(S)} =

∫
f(ω,ΠA(S))dµ (22)

where ΠA(S) is the projector in the spectral resolution of A associated with set S.

(d) For any two commuting observables A,B the measure µ yields conditional probabilities in the

following manner: for real Borel sets S, T

tr {ρΠA(S)ΠB(T )} =

∫
f(ω,ΠA(S),ΠB(T ))dµ (23)

where ΠA,ΠB are the projectors corresponding to S, T in the spectral decomposition of A,B.

Arthur Fine [22] defines the set of conditions (a), (c), and (d) as a deterministic hidden-variable

model (equivalently, a factorizable stochastic model). He also showed that these conditions are entirely

equivalent to choosing instead (a), (b), and (d). In fact, the former set essentially corresponds to Bell’s

hidden-variable model while the latter choice corresponds to Kochen-Specker’s conditions.

Note that the product rule for functional identity constraint follows from the Borel function rule

f(v(A)) = v(f(A)), (24)

which is a natural consequence of f(A) =
∑
j f(aj)Aj and taking

v′(A) = log2(v(2A)). (25)

Thus, for compatible observables A,B

v′(A) + v′(B) = log2(v(2A)) + log2(v(2A)) = log2(v(2A)v(2B)) = log2(v(AB)). (26)

where the product rule is used in the last step. In practice, it is more convenient to specify both sum

and product rule, although only one of them is strictly necessary.

Assume that there is a classical probability space such that the outcomes for projectors A = A2, B =

B2 is described by the joint distribution µ. In quantum theory, for some state ρ, the conditional

probability of A given B is defined by

Pr[A|B] =
tr {ABρBA}

tr {BρB}
=

tr {ρBAB}
tr {ρB}

. (27)

The conditional probability rule is said to hold if the distribution defined above coincides with the

distribution given by measure µ. For any projector P , define

P−1(1) = {ω ∈ Λ | P (ω) = 1}, (28)

i.e., it gives the set of all elements in Λ that yield a value of 1 for observable X. This result can be

stated as a theorem:

Theorem 2 (Conditional probability rule). Suppose that dim(H) ≥ 3 and that conditions (a), (c),
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and (d) hold. The conditional probability rule states that for one-dimensional projectors A,B, if

µ[a|b] =
µ[a ∩ b]
µ[b]

=
tr {ρBAB}

tr {ρB}
, (29)

where a = A−1(1), b = B−1(1).

The next theorem describes the key result:

Theorem 3. Assume dim(H) ≥ 3 and a deterministic hidden-variable model for quantum events.

Then all quantum observables commute.

Proof: Let A,B be a pair of quantum observables, which can be thought of as one-dimensional

projectors without loss of generality. It must be the case that

[A,B] = 0 ⇐⇒ [Ai, Bj ] = 0 (30)

for all Ai, Bj in the spectral decomposition of A,B. All projectors may be expressed as a sum of

one-dimensional ones (though the decomposition is not necessarily unique.)

Using theorem 2:

µ[a, b] = µ[a|b]µ[b] =
tr {ρBAB}

tr {ρB}
tr {ρB} = tr {ρBAB} . (31)

Also,

µ[a, b] = µ[b|a]µ[a] =
tr {ρABA}

tr {ρA}
tr {ρA} = tr {ρABA} . (32)

Thus, for any state ρ, since A2 = A,B2 = B

BAB = ABA =⇒ [AB,BA] = 0, BAB2 = (AB)2, (BA)2 = ABA2 =⇒ (AB −BA)2 = 0. (33)

Because C = [A,B] is skew-Hermitian, i.e., C† = [B,A] = −[A,B],

C2 = 0 =⇒ C = [A,B] = 0. (34)

Thus, a hidden-variable model of the Kochen-Specker (or Bell) type is proven to be equivalent to

simultaneous commutativity of quantum observables. In particular, because conditions (b) and (c) are

effectively interchangeable, it implies that the sum rule can be valid for non-commuting observables

provided other conditions are present—namely, conditions (a) and (d). Therefore, von Neumann’s

assumption in his original no-go proof is shown to be no less physical than Bell’s or Kochen-Specker’s

seemingly less restrictive conditions.

5.2 Success in the E91 and BBM92 protocols revisited

Part of the testing process in any quantum key agreement protocol checks for the identity of the source

state, sometimes referred to as a candidate state for Alice and Bob. The idea is that the presence of

Eve will introduce some noise into the quantum state of the signals received by Alice and Bob. For

example, in the E91 protocol [3], Alice and Bob expect a pair of qubits in a singlet state

|Ψ−〉 =
1√
2

(|10〉 − |01〉) . (35)

In the presence of noise, either from Eve or from imperfections in the quantum channel, they may
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Figure 6: The E91 protocol. A source of photon
pairs in the singlet state sends a qubit each to Alice
and Bob. Alice and Bob measure the polarization
along the three directions: a1 = 0◦, a2 = 45◦, a3 =
90◦ for Alice and b1 = 45◦, a2 = 90◦, a3 = 135◦ for
Bob.

Figure 7: The BBM92 protocol. Alice and Bob
get qubits from a singlet source. Alice and Bob
measure the polarization along the two bases: the
horizontal-vertical and diagonal bases. Afterwards,
they compare bases they used and keep those results
with matching basis choices.

instead observe a Werner state ρ

ρ = (1− ε)|Ψ−〉〈Ψ−|+ ε
1l

4
. (36)

if, for example, the noise is completely unbiased. If the level of noise ε is too large, Alice and Bob

abort the protocol. Fig. (6) summarizes how the E91 protocol is implemented. Alice and Bob verify

the security of the key by testing if the correlations in their measurement results obey Bell’s theorem.

In 1992, Charles Bennett, Gilles Brassard, and David Mermin argued that Bell’s theorem is not an

essential part of cryptographic security and proposed a simpler, EPR-type version of BB84, the BBM92

protocol [27], shown in fig. (7). They established a similar inequality for measurement correlations

but concluded that the EPR effect is superficial for successful quantum key distribution. Koji Nagata

then showed in 2005 that for both the E91 and BBM92 protocols, the criterion of success depends on

the fidelity to an EPR state [25]. This leads to an explicit construction of inequalities valid for the

non-contextual hidden variables as discussed previously. The violation of this Kochen-Specker realism

becomes a necessary condition for the security of both protocols.

First, let us analyze the Ekert inequality. Suppose ρ is a candidate for the source state used by

Alice and Bob. Let E(A) be the expectation value of observable A with respect to state ρ:

E(A) = tr {ρA} . (37)

Then the Ekert inequality is given by

|E(a1b1)− E(a1b1) + E(a1b1) + E(a1b1)| ≤
√

2. (38)

The observables ai, bj can be written as

a1 = σ(A)
x , a3 = σ(A)

y , b1 =
σ

(B)
x + σ

(B)
y√

2
, b3 =

σ
(B)
y − σ(B)

x√
2

, (39)

where σ
(i)
α , α = x, y, z are Pauli operators for Alice and Bob (i = A,B), respectively.

Substituting eq. (39) into eq. (38)∣∣∣E (σ(A)
x σ(B)

x

)
+ E

(
σ(A)
y σ(B)

y

)∣∣∣ ≤ 1. (40)

It is straightforward to verify that

tr
{
ρ
(
σ(A)
x σ(B)

x + σ(A)
y σ(B)

y

)}
= 2tr

{
ρ
(
|Ψ+〉〈Ψ+| − |Ψ−〉〈Ψ−|

)}
, (41)
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where |Ψ±〉 = (|01〉 ± |10〉)/
√

2. This implies that

∣∣〈Ψ+|ρ|Ψ+〉 − 〈Ψ−|ρ|Ψ−〉
∣∣ ≤ 1

2
. (42)

Thus, it follows that the violation of the Ekert inequality in the form of eq. (42) is the same as saying

that

〈Ψ+|ρ|Ψ+〉 > 1

2
or 〈Ψ−|ρ|Ψ−〉 > 1

2
. (43)

That is, if the fidelity to either EPR state (equivalently, the singlet fraction) of the state ρ is such that

ρ corresponds to a distillable entangled two-qubit state, then the Ekert inequality is violated and the

E91 protocol is secure.

The original form of Ekert’s inequality can also be derived if one supposes that Alice and Bob’s

correlations are induced by a separable state of the form

ρ =

∫
p(~nA, ~nB)ρ(A) ⊗ ρ(B)d~nAd~nB , (44)

where

ρ(i) =
1

2

(
1l + ~nA · ~σ(i)

)
, ~σ(i) = (σ(i)

x , σ(i)
y , σ(i)

z ), i = A,B. (45)

The choice of ~ni corresponds to some eavesdropping strategy for Eve. Introducing ~ak,~bl such that

~ak · ~σ(A) = ak, ~ak · ~σ(A) = ak. (46)

Define

S = tr {ρ (a1b1 − a1b3 + a3b1 + a3b3)} . (47)

Since a1, a3 and b1, b3 anti-commute in the E91 scheme, |S| ≤
√

2 if ρ is separable. In fact, one gets

Ekert’s original expression [3] for S if the state ρ (44) is plugged into eq. (47).

One can do a very similar analysis with the BBM92 protocol. The BBM inequality is given by∣∣∣E (σ(A)
x σ(B)

x

)
+ E

(
σ(A)
z σ(B)

z

)∣∣∣ ≤ 1. (48)

Since

tr
{
ρ
(
σ(A)
x σ(B)

x + σ(A)
y σ(B)

y

)}
= 2tr

{
ρ
(
|Φ+〉〈Φ+| − |Ψ−〉〈Ψ−|

)}
, (49)

where |Φ+〉 = (|00〉+ |11〉) /
√

2, it follows that

∣∣〈Φ+|ρ|Φ+〉 − 〈Ψ−|ρ|Ψ−〉
∣∣ ≤ 1

2
. (50)

This means that a BBM inequality violation implies that

〈Φ+|ρ|Φ+〉 > 1

2
or 〈Ψ−|ρ|Ψ−〉 > 1

2
. (51)

Introducing ~x, ~z such that

~x · ~σ(i) = σ(i)
x , ~z · ~σ(i) = σ(i)

z , i = A,B, (52)

then one can define a correlation T :

T = tr
{
ρ
(
σ(A)
x σ(B)

x + σ(A)
z σ(B)

z

)}
(53)
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and substitute eq. (44) into ρ to get

|T | ≤ 1, (54)

which yields the same inequality in the BBM92 paper [27].

Let us finally establish the connection between the two inequality violations and the refutation of

Kochen-Specker realism. Recall that the Kochen-Specker proof shows a contradiction in the following

way: Non-contextual realistic functions are represented by non-commuting operators in the Hilbert

space formalism of quantum theory. However, the product rule and the uniqueness property of Gleason’s

theorem imply that all quantum operators should simultaneously commute.

Consider some realistic function fω(A) of some hidden variable ω ∈ Ω and observable A onto the

algebra σ(Ω) with normalized measure µ. Then,

E(A) = tr {ρA} =

∫
ω∈Ω

µ(dω)fω(A), ∀A ∈ Θ. (55)

For observables in terms of Pauli operators σ
(i)
α (α = x, y, z; i = A,B),

fω(σ(i)
α ) = ±1 (56)

since these are their eigenvalues.

The Kochen-Specker paradox occurs when both realistic functions for deterministic hidden-variables

exists and the product rule holds:

fω(A)fω(B) = fω(AB), (57)

which is assumed to hold for every hidden variable ω (more complicated scenarios can be envisioned

[22]). There are three cases to consider. Let x, y = ±1. Then the three scenarios are

(1) 1 + x+ y − xy = ±2,

(2) 1− x− y − xy = ±2,

(3) 1 + x− y + xy = ±2. (58)

For each scenario, we can define a function Wj(ω), j = 1, 2, 3 such that

x = fω(σ(A)
x σ(B)

x ), y = fω(σ(A)
y σ(B)

y ), (59)

from which Wj = ±2 implies

E(Wj) =

∫
ω∈Ω

µ(dω)Wj(ω) ≤ 2, j = 1, 2, 3. (60)

From the product rule,

fω(σ(A)
x σ(B)

x )fω(σ(A)
y σ(B)

y ) = fω(σ(A)
x σ(B)

y )fω(σ(A)
y σ(B)

x ) = fω(σ(A)
z σ(B)

z ). (61)

Hence,

E(W1) ≤ 2 ⇐⇒ 1 + E(σ(A)
x σ(B)

x ) + E(σ(A)
y σ(B)

y )− E(σ(A)
z σ(B)

z ) ≤ 2,

E(W2) ≤ 2 ⇐⇒ 1− E(σ(A)
x σ(B)

x )− E(σ(A)
y σ(B)

y )− E(σ(A)
z σ(B)

z ) ≤ 2,

E(W3) ≤ 2 ⇐⇒ 1 + E(σ(A)
x σ(B)

x )− E(σ(A)
y σ(B)

y ) + E(σ(A)
z σ(B)

z ) ≤ 2 (62)
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These conditions can be rewritten, respectively, as

(1) tr {ρ|Ψ+〉〈Ψ+|} ≤ 2,

(2) tr {ρ|Ψ−〉〈Ψ−|} ≤ 2,

(3) tr {ρ|Φ+〉〈Φ+|} ≤ 2, (63)

since for example, for case (2),

|Ψ−〉〈Ψ−| = 1

4

(
1l− ~σ(A) · ~σ(B)

)
. (64)

Observe that conditions in eq. (63) are exactly the conditions necessary for satisfying the Ekert and

BBM inequalities. The implication is that violation of either inequality is not possible is a non-

contextual realistic model is valid in the Hilbert space of the quantum system in question. Thus,

the Kochen-Specker theorem provides a precondition for secure quantum key agreement in these two

EPR-type protocols.

Nagata [25] also demonstrated that one can replace the Kochen-Specker product rule with a locality

constraint on the hidden variables, leading to a set of Bell inequalities, the violation of which also implies

security in the E91 and BBM92 protocols.

6 Device-independent security from contextuality

Quantum key agreement is usually based on three basic assumptions: (i) that the laws of quantum

mechanics are correct, (ii) that no information leaks from Alice’s and Bob’s laboratories (since this is

potentially accessible to Eve), and (iii) Alice and Bob can accurately characterize how their devices

operate. The last assumption is crucial because if Alice and Bob do not know completely how their

devices work, the protocol might be compromised. For instance, in the BB84 protocol, if Alice and

Bob share ququarts instead of qubits then it the scheme becomes insecure [28].

At first glance, it would seem that the control of devices is an unavoidable assumption. Remark-

ably, this is not the case. It is possible to prove that a cryptographic protocol secure by making no

assumptions about how devices work or on what quantum states they operate. The physical basis for

such device-independent security [5] lies on the fact that measurements on entangled systems provide

non-local correlations, i.e., correlations not reproducible by classical shared randomness that Alice and

Bob can exploit for generating a secret key. Device-independent quantum key distribution protocols

face many experimental challenges but its practical implementations will certainly be more robust

against technological limitations.

In the BB84 protocol, the phenomenon of information gain vs. state distrbance is mainly responsible

for the secret key. However, the traditional scheme as it stands makes use of a particular set of states

and measuring devices, which means in practice, the security of practical implementations of BB84

depend on how trustworthy Alice and Bob’s devices will be. A rather fundamental question arises:

is it possible to utilize the trade-off between information gain and disturbance for device-independent

security? Karol Horodecki, et al. [34] showed that contextuality plays a major role in allowing the

trade-off to be operational, leading to a quantum key distribution protocol similar in many ways to the

BBM92 protocol.
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Figure 8: The Peres-Mermin box. The table
shows the observables for each box, where com-
patible observables lie on the rows and columns.
A source of pairs of Peres-Mermin boxes dis-
tributes one each to Alice and Bob is also
shown, where Alice measures the rows, while
Bob measures the columns. The product of out-
comes for rows and columns are also indicated.
There is enough intrinsic (non-local) random-
ness in the setup to generate 0.44 bits of secret
key per pair.

6.1 Peres-Mermin boxes and the Kochen-Specker paradox

In order to use contextuality in cryptography, consider the notion of a ‘box’ in the Popescu-Rohrlich [29]

sense—a family of probability distributions. For a given input observable, the box returns some output

whose statistics is described by some distribution. In this case, the box will respect quantum mechanics;

in fact, it will generate distributions concerning Kochen-Specker effects, i.e., the impossibility of jointly

measuring incompatible observables. Because of this, the box is called a Kochen-Specker box. The

relevant version of the Kochen-Specker theorem will be that of Peres and Mermin.

A Peres-Mermin box is a set of 6 joint probability distributions where the nine input observables

{Xij} are depicted in fig. (8). In the 3 × 3 array, the Kochen-Specker product rule applies to the

mutually commuting observables in the rows and columns:

[rows]

3∏
j=1

Xij = 1 for i = 1, 2, 3; [columns]

3∏
i=1

Xij = 1 for j = 1, 2,

3∏
i=1

Xi3 = −1. (65)

One can envision a distributed version where a source prepares pairs of Peres-Mermin boxes that are

perfectly correlated, as illustrated in fig.(8). The bipartite box has the following properties:

• Local outcomes satisfy Kochen-Specker constraints in the Peres-Mermin version.

• if Alice and Bob measure the same observable, the results are perfectly correlated.

The idea now would be for Alice to measure along rows and Bob to measure along columns of their

own respective Peres-Mermin box. Note that this is different situation from what is used to prove the

Kochen-Specker theorem, since here the contexts for the measurement are predetermined for Alice and

Bob. In addition we assume perfect correlations for corresponding observables in each of the boxes, so

that identical outcomes are obtained in Alice and Bob’s sides. There is also a no-signalling assumption,

which says that Alice’s local distributions are not influenced by Bob’s choice of measurement, and vice-

versa. The no-signalling condition allows us to talk meaningfully about local (i.e., marginal) probability

distributions for Alice and Bob.

It should be emphasized that the distributed Peres-Mermin box necessarily exhibits quantum non-
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Figure 9: The distributed Peres-Mermin box.
Solid lines correspond to an even number of
-1s while the dashed line corresponds to an
odd number -1s. The dotted lines indicate the
Alice-Bob correlations.

locality, as would any distributed version of the Kochen-Specker paradox [30]. Indeed, what the dis-

tributed Peres-Mermin box achieves is that it translates local contextuality into non-locality [33], which

is well-known to be a necessary condition for quantum cryptographic security.

Let us describe the distributed Peres-Mermin box more specifically. Formally, it consists of a family

of nine conditional probability distributions Pr(a, b|A,B) where A = 1, 2, 3 runs over columns of Alice’s

box and B = 1, 2, 3 runs over rows of Bob’s box, and a = (a1, a2, a3), b = (b1, b2, b3) denotes the triples

of outcomes for a row/column. The family of distributions is constrained by the following conditions:

(a) (Kochen-Specker conditions) For A = 1, 2;B = 1, 2, 3 the product of outcomes is +1, that is,

a, b ∈ {(+,+,+), (−,−,+), (−,+,−), (+,−,−)}. (66)

For A = 3, the outcomes multiply to -1, so

a[A3] ∈ {(−,−,−), (−,+,+), (+,−,+), (+,+,−)}. (67)

(b) (Alice-Bob correlations) Corresponding observables for Alice and Bob’s boxes yield identical out-

comes, aj = bj ,∀j.

(c) (No-signalling) The marginal probabilities of Alice do not depend on Bob’s choice of columns to

measure and the marginal probabilities of Bob do not depend on Alice’s choice of rows to measure,

and vice-versa:

Pr(a|A,B) = Pr(a|A), Pr(b|A,B) = Pr(b|B). (68)

6.2 Intrinsic randomness and Bell inequalities for distributed Peres-Mermin

boxes

The distributed box obeys quantum laws but what observables and states are involved in how it is

implemented does not need to be specified—the condition for device-independent security [34]. Under

such an assumption, the outcome of a fixed row or column possesses about 0.44 bits of intrinsic ran-

domness. To make the discussion more definite, the key produced from the first row in Bob’s system

is considered.

Let us first demonstrate that on Bob’s side, the outcome of the first rows and columns can not all

have definite values. Suppose that these observables have deterministic outcomes. Using the notation

indicated in fig. (9), assume without loss of generality that for the observables in question

B′1, B1, B
′′
1 , B

′′
2 , B

′′
3 = +1. (69)

Due to perfect Alice-Bob correlations,

A′1, A1, A
′′
1 , A

′′
2 , A

′′
3 = +1. (70)
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Using both Alice-Bob correlations and the Kochen-Specker conditions, one obtains extra-strong corre-

lations for the following set of observables:

a = A2, a′ = A′3, b = B′2, b′ = B3. (71)

This can be seen by noting that both constraints imply

A2 = A′2 = B′2 = B3, A3 = −A′3 = −B′3 = −B3, B2 = B3, B′2 = B′3, (72)

where since the first two observables in each equation are commuting,

|〈ab〉+ 〈ab′〉+ 〈a′b〉 − 〈a′b′〉| = 4. (73)

Such a correlation violates the well-known Clauser-Horne-Shimony-Holt inequality, which has a value

of 2 on the right-hand-side, and also the Tsirelson bound for quantum mechanics, which is 2
√

2.

Now let us show that the first row of Bob’s side can not itself have definite values. Assume that

A′′1 = A′′2 = A′′3 = +1. Due to Kochen-Specker conditions,

A1 = A′1, A2 = A′2, A3 = −A′3 (74)

so that the product of outcomes is correct. On the other hand, the perfect correlations between Alice

and Bob imply that

Ai = Bi, A′i = B′i, A′′i = B′′i . (75)

Therefore, the following correlations hold for the bipartite system

A1 = B1, A1 = B2, A3 = B3,

A1 = B′1, A2 = B′2, A3 = −B′3.
(76)

This leads us to consider the following Bell inequality:

γ(A,B) = 〈A1B1〉+ 〈A2B2〉+ 〈A3B3〉+ 〈A1B
′
1〉+ 〈A2B

′
2〉 − 〈A3B

′
3〉 ≤ 4. (77)

Correlations (76) says that

γ(A,B) = 6. (78)

Supposing that γ is not necessarily 6, let us derive the constraints for Bob’s probability distribution

for outcomes in his first row. In this regard, consider a related Bell inequality involving probabilities

β(A,B) = Pr[A1 = B1] + Pr[A2 = B2] + Pr[A3 = B3]

+ Pr[A1 = B′1] + Pr[A2 = B′2] + Pr[A3 6= B′3] ≤ 5 (79)

where

β =
1

2
(γ(A,B) + 6) . (80)

From Alice-Bob correlations, it must be true that

Pr[A1 = B1] = Pr[A2 = B2] = Pr[A3 = B3] = 1. (81)

For the remaining three probabilities in β, define the following probabilities for outcomes in Bob’s
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first row:

q0 = Pr(+,+,+), q1 = Pr(+,−,−), q2 = Pr(−,+,−), q3 = Pr(−,−,+). (82)

where it can be checked that
∑
j qj = 1.

Consider the marginal distribution

pi = Pr[B′′i = +1]. (83)

Then for each observable in Bob’s first row, we have the following probabilities of getting +1:

p1 = q0 + q1, p2 = q0 + q2, p3 = q0 + q3. (84)

Observe that the pis do not sum up to 1 since they represent three separate probability distributions

(pi, 1− pi) for Bob’s first row observables. Thus,

q0 = 1
2 (−1 + p1 + p2 + p3) , q1 = 1

2 (1 + p1 − p2 − p3) ,

q2 = 1
2 (1− p1 + p2 − p3) , q3 = 1

2 (1− p1 − p2 + p3) .
(85)

Not all pis are allowed by the Kochen-Specker constraints so that qi ≥ 0 always. Due to Alice-Bob

correlations, the marginal distribution for Alice’s first row have the same probabilities:

Pr[A1 = A′1] = p1 = Pr[A′′1 = +1], Pr[A2 = A′2] = p2, Pr[A3 = A′3] = p3. (86)

Consider the events X ∩ Y ⊂ Z where

X = {A1 = A′1}, Y = {A′1 = B′1}, Z = {A1 = B′1}. (87)

and using the trivial identity

Pr(Z) ≥ Pr(X ∩ Y ) ≥ Pr(X) + Pr(Y )− 1 (88)

leads to

Pr[A1 = B′1] ≥ p1 (89)

since Pr(Y ) = 1 from the Alice-Bob correlations.

Similarly,

Pr[A2 = B′2] ≥ p2, Pr[A3 6= B′3] ≥ p3. (90)

Thus,

p1 + p2 + p3 ≤ βQM − 3. (91)

The above result was obtained by letting Bob’s first row be (+,+,+) with some non-zero probability.

Doing the same for the combinations (+,−,−), (−,+,−), (−,−,+):

p1 + (1− p2) + (1− p3) ≤ βQM − 3,

(1− p1) + p2 + (1− p3) ≤ βQM − 3,

(1− p1) + (1− p2) + p3 ≤ βQM − 3. (92)
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Figure 10: Quantum key distribution using
distributed Peres-Mermin boxes. Alice and
Bob receives box pairs from a source. They
split the boxes into three samples: one for
checking Kochen-Specker constraints on indi-
vidual boxes, another to check first-row corre-
lations as indicated in the diagram. If both
conditions are satisfied, the correlated out-
comes in the first row of the remaining sam-
ples constitute the shared secret key.

Using eq. (85) and eq. (80) gives

qk ≤
1

2
(βQM − 4) =

1

4
(γQM − 2). (93)

The nontrivial quantum mechanical bound γQM = 5.6364 was obtained numerically using a semi-definite

program following the generalized Tsirelson approach of [31, 32].

Therefore,

qk ≤ µ ≈ 0.9091. (94)

Note that µ ≥ 1/2 since γ = 4 is a classically achievable bound. Recall that the Kochen-Specker

result for Peres-Mermin observables suggest that γ = 6 is possible. This means that the distributed

Peres-Mermin box offers security by not allowing for extra-strong violations of Bell inequalities—that

is, correlations stronger than what even quantum mechanics can achieve.

6.3 Secure key from distributed Peres-Mermin boxes

Suppose Alice and Bob share a bipartite box QAB which Eve might decompose into N boxes:

QAB =

3∑
e=0

qeQ
(e)
AB (95)

which is a result of a joint box QABE where Eve hands the part QAB to Alice and Bob. This situation

is analogous to giving Eve access to the purification of Alice and Bob’s bipartite state.

In this case, the bipartite box will be distributed Peres-Mermin boxes, to be used in the following

cryptographic protocol:

1. Alice and Bob share many distributed boxes, possibly given to them by Eve from a joint box

QABE .

2. Alice and Bob divide the boxes into three groups, two for testing purposes and one for the secret

key.

3. In the first sample, Alice measures random rows of observables to check for Kochen-Specker

conditions. Bob does the same thing by measuring random columns. If the outcomes they get

do not correspond to a distributed Peres-Mermin box, they abort the protocol. Otherwise they

proceed. (In the presence of noise, they check for a certain level of errors in the outcomes, rather

than expecting all results to satisfy the product rule.)

4. From our previous analysis, Alice and Bob would like to get a key from the first row (of course,

they could use any other row, or a column for that matter but Bob’s first row is chosen for

definiteness). They use the second sample of box pairs to check for perfect correlations (as in
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fig. (10)). Note that because Alice initially had devices for measuring columns, she has to switch

to a different setup for measuring rows. There are no assumptions made about devices so they

might be potentially malicious. Nonetheless, Bob’s first row outcomes have been shown to be

secure so it is enough that Alice is able to get perfect correlations in her first row to verify that

the Alice-Bob correlations hold.

5. If both Kochen-Specker conditions and Alice-Bob correlations are met, then Alice and Bob go

ahead and measure the first row of the remaining box pairs, and their identical outcomes constitute

a raw key.

6. Alice and Bob can then perform error correction and privacy amplification to get a shorter but

more secure key. Note that error correction is not needed in the absence of noise in the system.

To estimate the secret key rate, let us consider the random variables (A,B,E) associated with the

outcomes of Alice and Bob’s first row observables and Eve’s ensemble choice. Using the Csiszar-Korner

formula

R∞ ≥ I(A : B)− I(B : E) (96)

provides a lower bound for the asymptotic key rate, where I(A : B) is the Shannon information between

variables A,B. Since I(A : B) = H(B) −H(B|A) and that in the ideal case, H(B|A) = 0, the lower

bound on the rate depends only on how Eve splits the boxes. One can show that the distribution that

gives the smallest entropy is given by

(q0, q1, q2, q3) = (µ, 1− µ, 0, 0), µ ≈ 0.9091, (97)

which gives

R∞ ≥ H(B|E) ≥ 0.439 (98)

which gives the secret key rate per distributed box.

So far, only the ideal case has been considered. One can extend the analysis to the case where some

noise is present, characterized an error rate ε. Even with imperfect distributed boxes, Kochen-Specker

conditions can still be satisfied all time. This is because Alice and Bob can force it by measuring only

two of three observables in a column or row, respectively, and then simply fabricating the last outcome

to what it should be to obey the constraints. The noise, therefore, only affects the correlations between

Alice and Bob for corresponding observables. Here Alice and Bob’s outcomes on the test sample are

assumed to be correlated with probability 1− ε for each observable.

One can carefully calculate [34] the new constraints on the qks to be

qk ≤ µ−
9

2
ε = ν, k = 0, 1, 2, 3. (99)

With this value, the bound on H(B|E) is given by

H(B|E) ≥ sup
δ>0

(
1− ε

δ

)
h

(
x+

9

2
ε

)
, (100)

and

H(B|A) ≤ h
(

3

2
ε

)
+

3

2
ε log2 3 (101)

where h(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy function.

Inserting these values into the Csiszar-Korner formula with δ = 1.8 yields

R∞ > 0 for ε < 0.68%. (102)
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This error threshold is smaller compared to usual thresholds obtained from Clauser-Korne-Shimony-

Holt inequalities, which are of the order of 2%. However, this value is just a rough estimate since

H(B|E) = inf
qi,εi

∑
i

qiH(Bi),
∑
i

qiεi = ε, (103)

where H(Bi) is the first row entropy of box Q
(i)
AB , has yet to be optimized to achieve a better key rate.

So far, only abstract distributed Peres-Mermin boxes have been considered. To apply the results,

the boxes have to be realized experimentally in the lab. Indeed, this is the case: the distributed boxes

can be simulated by measuring the Peres-Mermin version of Kochen-Specker observables on pairs of

qubits in the maximally entangled state

|ψ〉AB = |Ψ−〉13 ⊗ |Ψ−〉24, (104)

where Alice receives qubits 1,2 and Bob receives qubits 3,4. The same state has been used in deriving

non-locality from contextuality [33].

The above reasoning proves that the key obtained from the distributed boxes protocol is secure

under individual attacks: Eve couples to each box independently and measures before Alice and Bob

do classical post-processing. Horodecki et al. [34] conjecture that stronger statements can be made if

one uses more advanced techniques for showing information-theoretic security.

7 Concluding remarks

The Kochen-Specker theorem states that there is no consistent way of assigning definite, non-contextual

answers to a set of yes-no questions regarding an individual quantum system. Conceptually, this means

that quantum theory can not be interpreted using a deterministic hidden variable model that assumes

value-definiteness and non-contextuality.

The invalidation of such Kochen-Specker form of classical realism is implicitly exhibited in the

security of quantum key agreement protocols, in particular, for EPR-type schemes such as E91 and

BBM92. The violation of certain Bell-type inequalities in both schemes entails a certification of the

Kochen-Specker theorem while simultaneously guaranteeing the secrecy of Alice and Bob’s shared key.

It has also been shown that contextuality in quantum mechanics holds only when the quantum

system of interest has a Hilbert space dimension of larger than 2. The BB84 protocol with chocolate

balls show that qubits are not protected from value definiteness. This does not imply that protocols

such as BB84 are insecure since complementarity still holds but it does indicate a fundamental difference

between two-level quantum systems and higher-dimensional ones.

In quantum key distribution, two features of quantum mechanics are often employed for security:

(i) the trade-off between information gain and disturbance of non-orthogonal states and (ii) quantum

non-locality. It has been demonstrated that device-independent cryptography is possible by exploiting

contextuality through a distributed version of the Peres-Mermin observables for the Kochen-Specker

paradox. Note that any distributed version of the Kochen-Specker paradox translates local contextual-

ity constraints into non-locality conditions. In the case of distributed Peres-Mermin boxes, security is

guaranteed by showing that a part of the total system can not exhibit too strong a non-locality—which

would lead to extra-strong correlations not attainable even in quantum theory.
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