Topic: Quantum strategies Lecturer: Gus Gutoski

Assignment: Quantum strategies

Due at 23:59 on Friday, May 25, 2012.

There are 30 marks available in this assignment. The assignment will be graded out of 20.

1. Co-strategies are adjoint channels. [5 marks.] Let $\Phi : L(\mathcal{X}) \to L(\mathcal{Y})$ be any super-operator. By analogy with matrices, the *adoint* of Φ is the unique super-operator $\Phi^* : L(\mathcal{Y}) \to L(\mathcal{X})$ satisfying $\langle \Phi(X), Y \rangle = \langle X, \Phi^*(Y) \rangle$ for all $X \in L(\mathcal{X})$ and $Y \in L(\mathcal{Y})$.

It is easy to see that if $\Phi: X \mapsto \sum_i A_i X A_i^*$ then $\Phi^*: Y \mapsto \sum_i A_i^* Y A_i$ and you may use this fact without proof in your answer.

Prove that if Φ is completely positive then $J(\Phi^*) = WJ(\Phi)^\mathsf{T}W^*$ where

$$W: \mathcal{Y} \otimes \mathcal{X} \to \mathcal{X} \otimes \mathcal{Y}: |i\rangle |i\rangle \mapsto |i\rangle |i\rangle$$

is the unitary swap operator.

Remark. Let $J(\Xi)$ be an (r+1)-round strategy for input spaces $\mathbb{C}, \mathcal{Y}_1, \dots, \mathcal{Y}_r$ and output spaces $\mathcal{X}_1, \dots, \mathcal{X}_r, \mathbb{C}$ where the channel $\Xi : L(\mathcal{Y}_{1\dots r}) \to L(\mathcal{X}_{1\dots r})$ is of the form described in lecture.

In lecture we defined an r-round co-strategy for input spaces $\mathcal{X}_1, \ldots, \mathcal{X}_r$ and output spaces $\mathcal{Y}_1, \ldots, \mathcal{Y}_r$ by $WJ(\Xi)^\mathsf{T}W^*$, which you now know is equal to $J(\Xi^*)$. In other words, the Choi-Jamiołkowski representation of a co-strategy is simply the Choi matrix of the *adjoint* Ξ^* of the super-operator Ξ described in lecture.

- 2. Characterization of measuring strategies. [5 marks.] Prove that if $\{Q_a\} \subset \operatorname{Pos}(\mathcal{Y}_{1...r} \otimes \mathcal{X}_{1...r})$ is a finite set for which $\sum_a Q_a$ is an r-round non-measuring strategy for input spaces $\mathcal{X}_1, \ldots, \mathcal{X}_r$ and output spaces $\mathcal{Y}_1, \ldots, \mathcal{Y}_r$ then $\{Q_a\}$ is an r-round measuring strategy for the same input and output spaces.
- 3. Lower-bound for quantum coin-flipping. [5 marks.] Consider a scenario in which Alice and Bob wish to flip a fair coin but do not trust each other. A quantum coin-flipping protocol with cheating probability p is a specification of an r-round measuring strategy $\{A_0, A_1\}$ for Alice and an r-round measuring co-strategy $\{B_0, B_1\}$ for Bob with the following properties:

Honest parties flip fair coins.

$$\langle A_0, B_0 \rangle = \langle A_1, B_1 \rangle = \frac{1}{2}.$$

Cheaters can't cheat too much.

For any outcome $i \in \{0, 1\}$ we have the following:

For every r-round measuring co-strategy $\{B'_0, B'_1\}$ for Bob it holds that $\langle A_i, B'_i \rangle \leq p$.

For every r-round measuring strategy $\{A'_0, A'_1\}$ for Alice it holds that $\langle A'_i, B_i \rangle \leq p$.

By definition, every protocol must have $p \ge 1/2$. Use the formula for maximum output probabilities to prove that every quantum coin-flipping protocol has cheating probability $p \ge 1/\sqrt{2} \approx 0.707$.

Hint. Fix $i \in \{0, 1\}$ and let p be the maximum probability that a cheating Bob can force honest-Alice to output i. By the formula for maximum output probabilities we know there exists a strategy Q for Alice with $A_i \leq pQ$. What happens if a cheating Alice uses strategy Q against honest-Bob?

4. Channel-channels are two-round strategies. We all know that channels map quantum states to quantum states and that a super-operator Φ is a channel if and only if Φ is completely positive and trace-preserving. But what kind of mappings map quantum *channels* to quantum *channels*?

Let $T(\mathcal{H}_{in}, \mathcal{H}_{out})$ denote the space of super-operators of the form $\Phi : L(\mathcal{H}_{in}) \to L(\mathcal{H}_{out})$. A mapping

$$\mathcal{C}: T(\mathcal{H}_{in}, \mathcal{H}_{out}) \to T(\mathcal{K}_{in}, \mathcal{K}_{out})$$
(1)

is called *completely completely positive* if for every choice of spaces $\mathcal{X}_{in}, \mathcal{X}_{out}$ and every choice of completely positive super-operators $\Psi: L(\mathcal{H}_{in} \otimes \mathcal{X}_{in}) \to L(\mathcal{H}_{out} \otimes \mathcal{X}_{out})$ it holds that the super-operator

$$\left(\mathcal{C} \otimes \mathbb{1}_{\mathrm{T}(\mathcal{X}_{\mathrm{in}}, \mathcal{X}_{\mathrm{out}})}\right)(\Psi) : \mathrm{L}(\mathcal{K}_{\mathrm{in}} \otimes \mathcal{X}_{\mathrm{in}}) \to \mathrm{L}(\mathcal{K}_{\mathrm{out}} \otimes \mathcal{X}_{\mathrm{out}}) \tag{2}$$

is also completely positive. (Here $\mathbb{1}_{T(\mathcal{X}_{in},\mathcal{X}_{out})}$ denotes the identity mapping on $T(\mathcal{X}_{in},\mathcal{X}_{out})$, as you might expect.)

We say that \mathcal{C} is trace-preserving-preserving if for every choice of trace-preserving super-operators $\Phi: L(\mathcal{H}_{in}) \to L(\mathcal{H}_{out})$ it holds that $\mathcal{C}(\Phi)$ is also trace-preserving. We say that \mathcal{C} is a channel-channel if it is both completely completely positive and trace-preserving-preserving.

For any mapping \mathcal{C} of the form (1) let us define a super-operator $K_{\mathcal{C}}$ so that

$$K_{\mathcal{C}}: L(\mathcal{H}_{out} \otimes \mathcal{H}_{in}) \to L(\mathcal{K}_{out} \otimes \mathcal{K}_{in}): J(\Phi) \mapsto J(\mathcal{C}(\Phi))$$
 (3)

- (a) (Challenge problem.) [5 marks.] Prove that if \mathcal{C} is a channel-channel then $J(K_{\mathcal{C}})$ is a two-round strategy for input spaces \mathcal{K}_{in} , \mathcal{H}_{out} and output spaces \mathcal{H}_{in} , \mathcal{K}_{out} .
- (b) [5 marks.] Use the link product to prove that every channel-channel \mathcal{C} admits a physical implementation whereby there exists a memory space \mathcal{Z} and channels

$$\begin{split} \Psi_{in}: L(\mathcal{K}_{in}) & \to L(\mathcal{H}_{in} \otimes \mathcal{Z}) \\ \Psi_{out}: L(\mathcal{H}_{out} \otimes \mathcal{Z}) & \to L(\mathcal{K}_{out}) \end{split}$$

such that for every channel $\Phi: L(\mathcal{H}_{in}) \to L(\mathcal{H}_{out})$ and every input state $\rho \in Dens(\mathcal{K}_{in})$ it holds that the output state $\mathcal{C}(\Phi)(\rho) \in Dens(\mathcal{K}_{out})$ is given by the following circuit.

$$\rho \xrightarrow{\mathcal{K}_{in}} \begin{array}{|c|c|c|c|c|}\hline \Psi_{in} & \mathcal{H}_{out} & \mathcal{H}_{out} & \mathcal{K}_{out} & \mathcal{$$

(c) [5 marks.] Prove the converse of question 4a: if $S \in L(\mathcal{K}_{out} \otimes \mathcal{K}_{in} \otimes \mathcal{H}_{out} \otimes \mathcal{H}_{in})$ is a two-round strategy for input spaces \mathcal{K}_{in} , \mathcal{H}_{out} and output spaces \mathcal{H}_{in} , \mathcal{K}_{out} then $S = J(K_{\mathbb{C}})$ for some channel-channel \mathbb{C} .