
QIC 890/891 Selected advanced topics in quantum information Spring 2014

Topic: Quantum cryptography tools Lecturer: Gus Gutoski

Assignment—Part II
Due at 23:59 on Friday, August whatever, 2014.

Typeset solutions can be e-mailed to the instructor. Alternately, hard copies can be placed in the instructor’s
mailbox in the QNC building.

In this assignment we derive a lower bound on the probability with which one of the parties can successfully
cheat in any protocol for quantum bit commitment.

Recall the notation from lecture: A,B denote the Hilbert spaces for the local registers of Alice, Bob. Sup-
pose honest-Alice wishes to commit bit b ∈ {0, 1} and let |ψb〉 ∈ A ⊗ B denote the pure state of the entire
system at the end of the commit phase when both parties are honest. Let ρb = TrA(|ψb〉〈ψb|) denote the
reduced state of Bob’s local portion of the system. For simplicity we assume that honest-Alice chooses her
bit b uniformly at random at the beginning of the protocol.

The goal of cheating-Bob is to guess honest-Alice’s bit b after the commit phase but before the reveal phase.
We define the quantity

pBob = Pr[cheating-Bob guesses b before the reveal phase]

and observe that pBob ≥ 1/2 in any protocol for quantum bit commitment because a random guess is correct
with probability 1/2.

The goal of cheating-Alice is to be able to reveal any value b ∈ {0, 1} chosen after the commit phase. The
extent to which she can achieve this goal is quantified by the average of the two probabilities with which she
can successfully reveal the two different possible values of b:

pAlice =
1

2
(Pr[cheating-Alice sucessfully reveals b = 0] + Pr[cheating-Alice sucessfully reveals b = 1]) .

Observe that pAlice ≥ 1/2 in any protocol for quantum bit commitment because cheating-Alice can act
honestly to reveal one of the two values b ∈ {0, 1} with certainty.

In this assignment we will prove that max{pAlice, pBob} ≥ 63% in any protocol for quantum bit commit-
ment.

We begin by specifying cheating strategies for both Alice and Bob in any protocol. Our cheating-Bob
acts honestly during the commit phase. Once the commit phase is complete, our cheating-Bob performs a
measurement to try to guess b.

Because our cheating-Bob acts honestly during the commit phase, he holds ρb after the commit phase.
Because b was chosen by honest-Alice uniformly at random, cheating-Bob is faced with a simple state
discrimination problem in which he is asked to identify a state sampled uniformly at random from {ρ0, ρ1}.
It is widely known that the maximum probability with which Bob can successfully guess b in this scenario
is

pBob =
1

2
+

1

4
‖ρ0 − ρ1‖Tr.

I will not ask you to prove this fact, but it is a fundamental fact worth knowing so I suggest you look it
up.
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Our cheating-Alice acts honestly during the commit phase in order to commit to b = 0. If cheating-Alice is
asked to reveal 0 then she completes the protocol honestly as though revealing 0. If cheating-Alice is asked
to reveal 1 then she applies a unitary U specified below to her portion of the system and then completes the
protocol honestly as though revealing 1.

For our cheating-Alice it is clear that

Pr[cheating-Alice sucessfully reveals b = 0] = 1

since in this case cheating-Alice acts honestly throughout the entire protocol to reveal b = 0. One of our
goals in this assignment is to bound the other probability

Pr[cheating-Alice sucessfully reveals b = 1]

in terms of ‖ρ0 − ρ1‖Tr—the quantity that dictates cheating-Bob’s success probability pBob.

To this end we view the reveal phase of the protocol as a three-outcome POVM measurement {P0, P1, Pabort}
jointly implemented by cheating-Alice and honest-Bob in which outcome c ∈ {0, 1} indicates that cheating-
Alice has successfully revealed bit b = c to honest-Bob and outcome ‘abort’ indicates that honest-Bob has
caught Alice cheating. Because cheating-Alice acts honestly to reveal 1, it must be that

Tr(P1|ψ1〉〈ψ1|) = 1.

However, the state to which this measurement is actually applied is not |ψ1〉 but is instead

|ψ′〉 def
= (U ⊗ IB)|ψ0〉.

In other words,
Pr[cheating-Alice sucessfully reveals b = 1] = Tr

(
P1|ψ′〉〈ψ′|

)
.

Intuitively, this probability should depend upon the observable difference between |ψ1〉 and |ψ′〉. You will
now formalize this idea.

1. Close states produce similar measurement results. [5 marks.] Let ρ, ξ be mixed quantum states
and let {P0, P1} be a POVM measurement, meaning that P0, P1 � 0 and P0 + P1 = I . Suppose that
‖ρ − ξ‖Tr ≤ δ and suppose that the measurement {P0, P1} yields outcome 1 with certainty when
applied to a system in state ρ.

Prove that the probability with which {P0, P1} yields outcome 1 when applied to a system in state ξ
is at least 1− δ/2.

Hint: Use the fact that ‖ρ− ξ‖Tr = 2 max
0�P�I

Tr(P (ρ− ξ)) for every choice of states ρ, ξ.

Thus, if |ψ′〉 is δ-close in trace distance to |ψ1〉 then cheating-Alice should be able to reveal b = 1 with
probability at least 1− δ/2. Let us now derive a bound on δ.

Uhlmann’s Theorem states that for any two mixed quantum states ρ, ξ on a space B and any two purifications
|φ〉, |ψ〉 ∈ AB of ρ, ξ the fidelity F (ρ, ξ) is given by

F (ρ, ξ) = max
U
|〈φ|(U ⊗ IB)|ψ〉|

where the maximization is over all unitary operators U acting on A.

The aforementioned unitary U applied by our cheating-Alice is the unitary achieving the above maximum
for F (ρ0, ρ1) with purifications |ψ0〉, |ψ1〉.
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2. If Bob cannot cheat then Alice can. [5 marks.] Write ε = ‖ρ0 − ρ1‖Tr so that pBob = 1
2 + 1

4ε.

Prove that
Pr[cheating-Alice sucessfully reveals b = 1] ≥ 1−

√
ε,

from which it follows that pAlice ≥ 1− 1
2

√
ε.

Hint: First use question 1 to bound this probability in terms of the trace distance between |ψ1〉 and
|ψ′〉. Then use the following equality relating the trace distance between two pure states |ψ1〉, |ψ′〉 to
their inner product:

|〈ψ1|ψ′〉|2 = 1− 1

4

∥∥|ψ1〉〈ψ1| − |ψ′〉〈ψ′|
∥∥2
Tr
.

Then use Uhlmann’s Theorem to relate the inner product |〈ψ1|ψ′〉| to the fidelity F (ρ0, ρ1). Finally,
use the following inequality relating the trace distance to the fidelity:

1− 1

2
‖ρ0 − ρ1‖Tr ≤ F (ρ0, ρ1).

3. Unconditionally secure quantum bit commitment is impossible. [5 marks.] Use question 2 to
prove that in any quantum bit commitment protocol it must be that max{pAlice, pBob} ≥ 0.63.

Hint: You can use software to solve a quadratic equation.
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