
Solution Set #2

Quantum Error Correction
Instructor: Daniel Gottesman

Problem #1. Distance 2 Stabilizer Codes

a) A distance 2 code should be able to detect a single X, Y , or Z error on any qubit, so we need generators
that anticommute with all of these. For instance, we can use X ⊗X ⊗X ⊗X and Z ⊗Z ⊗Z ⊗Z: The
first will anticommute with Z, the second will anticommute with X, and both will anticommute with
Y , allowing us to detect all three types of errors. There are two generators, so this is a [[4, 2, 2]] code
as desired.

We can choose logical Z operators Z1 = Z ⊗Z ⊗ I ⊗ I and Z2 = Z ⊗ I ⊗Z ⊗ I. These both commute
with the stabilizer, so are valid logical operations. Note that two other obvious choices I ⊗ I ⊗ Z ⊗ Z
and I ⊗ Z ⊗ I ⊗ Z are equivalent to Z1 and Z2, respectively, by multiplication by an element of the
stabilizer, while I ⊗ Z ⊗ Z ⊗ I = Z1Z2 (and Z ⊗ I ⊗ I ⊗ Z is equivalent to it).

Therefore our logical basis states should be eigenstates of the two generators of the stabilizer and of
Z1 and Z2 (with eigenvalues +1 for the stabilizer generators and different eigenvalues, depending on
the basis state, for the other two operators). Thus:

|00〉 = |0000〉+ |1111〉 (1)
|10〉 = |0101〉+ |1010〉 (2)
|01〉 = |0011〉+ |1100〉 (3)
|11〉 = |0110〉+ |1001〉 (4)

b) As in part a, we need generators that anticommute with X, Y , and Z on each qubit. For the n = 2k
codes, we can just take the straightforward generalization of the [[4, 2, 2]] code: X⊗n and Z⊗n. These
two operators commute, so this is a valid stabilizer code, with parameters [[2k, 2k − 2, 2]], as desired.

However, for n = 2k + 1, these operators do not commute. We can still take X⊗n as one generator,
allowing us to detect Y or Z on any qubit, but for our second generator we are stuck with something
like Z⊗(n−1), which commutes with the first generator (since n− 1 is even), but only detects X errors
on the first n− 1 qubits. We need a third generator, such as Zn−1Zn (Z operators acting only the last
two qubits). Since there are three generators, the parameters of the code are [[2k + 1, 2k − 2, 2]].

c) As in the solution to part b, the problem with a [[3, 1, 2]] stabilizer code is the failure to commute of
possible generators. We are only allowed to choose two generators to still have one encoded qubit, and
at least one of those two generators must anticommute with X, Y , and Z on each qubit. Consider the
possibilities for how the generators can act on a particular qubit:

• The two generators act as I on this qubit. Then neither anticommutes with X, Y , or Z.

• One generator acts as I, while the other acts as X. Then we can detect Y and Z on this qubit,
but not X. Similarly if the second generator acts as Y or Z — there will always be one Pauli
matrix which cannot be detected.

• The two generators act as the same non-trivial Pauli matrix, for instance X. In this case, both
will commute with X, so we again cannot detect X.

1

• The two generators act as different non-trivial Pauli matrices on the qubit. In this case, we can
detect all three possibilities, X, Y , and Z, on this qubit.

This tells us that each generator must act non-trivially on all three qubits, and that the two generators
act differently on each qubit. But different Pauli matrices anticommute, so the overall phase produced
by trying to commute one generator past the other is thus (−1)3 = −1, and the generators would have
to commute. We thus cannot find a stabilizer code with parameters [[3, 1, 2]].

Problem #2. The 9-Qubit Code as a CSS Code

a) We can just copy the parity check matrices from the stabilizer:

H1 =


1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1

 (5)

H2 =
(

1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1

)
(6)

The generator matrices are then the duals of these two matrices, which we can find by choosing
orthogonal vectors. We know they should have three and seven rows, respectively.

G1 =

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

 (7)

G2 =



1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1
1 0 0 1 0 0 1 0 0


(8)

Notice that the rows of H1 are also rows of G2 (C⊥1 ⊆ C2) and that the rows of H2 are within the span
of the rows of G1 (C⊥2 ⊆ C1), as had to be true for a CSS code.

b) C1 has distance d1 = 3, as is clear from the generator matrix: all codewords have weight which is a
multiple of 3. C2, however, has distance d2 = 2, as is also clear from the generator matrix. There are
no codewords of weight only 1, but there are many of weight 2. Thus, min(d1, d2) = 2.

However, the 9-qubit code has distance 3 because it is degenerate. The phase errors which take us
from one classical codeword in C2 to another act the same on the quantum code because their product
is in the stabilizer. You can see that the weight two codewords in G2 are all also in H1.

Problem #3. Stabilizer Entangled States

a) Let us start with |00〉 + |11〉. We note that both kets in the superposition have even parity, so this
state is a +1 eigenstate of Z ⊗ Z. It is also invariant when we flip both qubits, so is a +1 eigenstate
of X ⊗X. Thus, the stabilizer is generated by 〈Z ⊗ Z, X ⊗X〉.

2

For |00〉− |11〉, we can use the same operators, but the eigenvalue of X ⊗X is −1 instead of +1. Thus
the stabilizer is 〈Z ⊗ Z, −X ⊗X〉.
Similarly, |01〉 + |10〉 has eigenvalues −1 and +1 for these two operators, so the stabilizer is 〈−Z ⊗
Z, X ⊗X〉. |01〉 − |10〉 has eigenvalue −1 for both, so its stabilizer is 〈−Z ⊗ Z, −X ⊗X〉.
The state |010〉− |101〉 has even parity for the first and third qubits, so is a +1 eigenstate of Z⊗ I⊗Z.
It has uniformly odd parity for the first two qubits, so is a −1 eigenstate of Z ⊗Z ⊗ I, and is similarly
a −1 eigenstate of I ⊗ Z ⊗ Z. However, this third operator is just the product of the first two, so is
not independent. For the third generator of the stabilizer, we go to X ⊗X ⊗X, which has eigenvalue
−1 for this state. Thus, the complete stabilizer is 〈−Z ⊗ Z ⊗ I, Z ⊗ I ⊗ Z,−X ⊗X ⊗X〉.

b) Clearly SA is Abelian, since it is a subset of S, and clearly it does not contain −1, again since SA ⊆ S.
We need only show SA is closed under multiplication, making it a group. But S is a group, so if
PA ⊗ IB ∈ S and QA ⊗ IB ∈ S, then PAQA ⊗ IBIB ∈ S, and this product has the desired form, so
PAQA ∈ SA.

c) The projector onto the code space of a stabilizer S is
∑

M∈S M/2r, and the density matrix of a pure
state is just the projector onto its one-dimensional subspace, so the density matrix of the full stabilizer
state is ρ =

∑
M∈S M/2n. Then the density matrix ρA of the qubits in set A is given by the partial

trace over B:

ρA = TrB

(
1
2n

∑
M∈S

M

)
=

1
2n

∑
M∈S

TrB M. (9)

But TrB M = MA(TrB MB), where M = MA⊗MB , MA acting on A, MB acting on B. The non-trivial
Pauli matrices are traceless, so TrB M = 0 unless M = MA ⊗ IB , which also means MA ∈ SA. Thus,
the sum is just a sum over elements of SA:

ρA =
1
2n

∑
MA∈SA

MA TrB IB =
1

2nA

∑
MA∈SA

MA, (10)

where nA is the number of qubits in A. (Note that we do not have to worry about MA appearing more
than once, since MA ⊗ I can itself only appear once in S.)

This density matrix ρA in general no longer represents a pure state, since SA might have fewer than
nA generators. However, ΠA =

∑
MA∈SA

MA/2rA (where rA is the number of generators of SA) is the
projector onto the subspace T (SA), and ρA = ΠA/2nA−rA , which is the uniform mixture over states in
the subspace.

3

