
Solution Set #2

CO 639: Quantum Error Correction
Instructor: Daniel Gottesman

Problem 1. Standard Form for Stabilizers

a) When we represent the stabilizer as an r× 2n matrix, adding rows of the matrix corresponds to multi-
plying together generators of the stabilizer; replacing a row with its sum with another row corresponds
to replacing the generator with its product with another generator. Since the product is also an element
of the stabilizer, and it is independent of the other generators, this leads to exactly the same stabilizer
— it is merely presented in a different way.

Rearranging qubits of the code — switching the first and third qubits, for instance — corresponds to
making the same rearrangement on the columns of the r × 2n matrix, only we have to rearrange both
the X part of the matrix (the left half) and the Z part (the right half). Between this ability and
the ability to perform row additions, Gaussian reduction gives us an equivalent QECC to the one we
started with.

Let us for the moment restrict attention to the X part of the matrix, and let s be its rank. Then
we can choose s linearly independent vectors, which we will put in the first s rows of the matrix. We
rearrange columns so that the first row has a 1 in the first column, and then add it to other rows so
that all of the others have a 0 in the first column. Then we rearrange columns again so that the second
row has a 1 in the second column. We can always do this because it is linearly independent from the
first row. We add the second row to other rows (including, if necessary, the first) to make sure all of
them have 0s in the second column. We repeat this procedure for all of the s linearly independent rows.
Now, since s is the rank of the X part of the matrix, all of the remaining rows are linearly dependent
on the first s rows, so the process of making them 0 in the first s columns has actually made them 0
everywhere. (Note that if s = r, there might not be any all-0s rows.)

This is the Gaussian elimination procedure, and applying the column rearrangements and row additions
to both halves of the matrix can therefore always produce a matrix of the desired form:(

I A B C
0 0 D E

)
(1)

b) The rows of the full r × 2n matrix are all linearly independent, so the matrix (D E) has maximum
rank. Suppose E did not have maximum rank; then by Gaussian elimination, we could make a row
of it all 0s. The corresponding row of D is ~d. But the stabilizer is Abelian, so we should have 0 for
the symplectic inner product of this row ~v with the jth row ~mj of the overall matrix (j ≤ s). Use the
notation ~wX and ~wZ to refer to the X and Z parts of a vector. Then we get

0 = ~vX · ~mjZ + ~vZ · ~mjX . (2)

Now, ~vX = ~0, ~vZ = (~d ~0), and ~mjX = (~ej ~a), where ~a is some vector and ~ej is a vector which is 1 in
the jth position and 0 elsewhere. Thus, we have that ~d · ~ej = 0, so the jth coordinate of ~d is 0. But
this is true for j = 1, . . . , s, so ~d = ~0, contradicting the fact that (D E) has maximum rank.

Thus, E has maximum rank, and by following the same Gaussian reduction procedure as in part a, we
can convert it to the matrix (I E′). This requires column rearrangements and row additions on the X
part of the matrix as well, but the row additions do nothing, as the X part of these rows is all 0, and
the column rearrangements alter A but do not change the basic form (1). We can then add rows of E

1



to rows of C in order to reduce C to the form (0 C ′). These row additions alter B, but again do not
change the basic structure of the matrix.

c) Suppose we want to find a Pauli matrix with error syndrome ~s. Then for coordinates j = 1, . . . , s, we
take a Z iff the jth coordinate of ~s is 1. For coordinates j = s + 1, . . . , r, we take an X iff the jth
coordinate of ~s is 1. A Pauli matrix of this form will automatically anticommute with the jth row iff
the jth coordinate of ~s is 1, as the standard form of the stabilizer has Xs or Zs (for j ≤ s and j > s,
respectively) in those locations.

Problem 2. Error Syndromes and Cosets

a) Suppose E and F are in the same coset of N(S). Then E = FN , with N ∈ N(S). Let M ∈ S, so
MN = NM . Then

EM = FNM = FMN = (−1)fMFN = (−1)fME, (3)

where FM = (−1)fMF . Therefore E and F have the same commutation or anticommutation rela-
tionship with all the elements of the stabilizer and therefore have the same error syndrome.

Conversely, if E and F have the same error syndrome, they have the same commutation/anticommutation
relationship with all elements of the stabilizer: Let N = F †E, and for some given M ∈ S, suppose
FM = (−1)fMF , so EM = (−1)fME also. Then

NM = F †EM = (−1)fF †ME = (−1)2fMF †E = MN. (4)

Since M was arbitrary, this means that N ∈ N(S), and therefore that E = FN is in the same coset of
N(S) as F .

b) Note that when error F occurs and we correct by E, we end up with an error syndrome equal to the
sum of the two error syndromes. When E and F are in the same coset, the overall error syndrome is
therefore 0, meaning we have returned to the code. However, we may have changed the encoded state.
Indeed, we have performed EF ∈ N(S); this is in some coset in N(S)/S, which corresponds to some
logical Pauli operation on the encoded state.

c) Recall we have the stabilizer
X Z Z X I
I X Z Z X
X I X Z Z
Z X I X Z

(5)

and the logical X and Z operations can be chosen to be X ⊗X ⊗X ⊗X ⊗X and Z ⊗Z ⊗Z ⊗Z ⊗Z.

The error syndrome of X1Z3 is 0011, which is the same as the error syndrome of the one-qubit Pauli
operation X5. Therefore, the overall operation is X1Z3X5. We need to figure out which coset N(S)/S
this is in. We could solve this systematically using linear algebraic methods (we want to write the
vector corresponding to X1Z3X5 as a sum of the vectors corresponding to the generators of S, X,
and Z), but for a problem this size, it is probably just as easy to figure it out just by looking at it.
We note that X1Z3X5 times Z has the form −Y ⊗ Z ⊗ I ⊗ Z ⊗ Y , which does have the same sort of
structure as elements of S. Indeed, we can multiply together the first, second, and fourth generators
to get Y ⊗Z ⊗ I ⊗Z ⊗ Y . The overall minus sign between the two has no physical significance, so we
can conclude that the error X1Z3 results in an overall Z after correction.

The error syndrome of Y2X4Z5 is 1111, which is the same as the error syndrome of Y4. The overall
operation is thus Y2Z4Z5, with an overall phase that has no physical significance. Multiplying this by
X and Z, we get Y ⊗I⊗Y ⊗X⊗X, again with some overall phase. We can just get this by multiplying
together the second, third, and fourth generators of S, so the net operation is a Y after correction.

2



Problem 3. Logical X and Z

a) We can choose Xi to be XiX5, and we can choose Zi to be ZiZ6 (both for i = 1, . . . , 4. Then
[Xi,M ] = 0 and [Zi,M ] = 0 for M ∈ S, [Xi, Xj ] = [Zi, Zj ] = [Xi, Zj ] = 0 for i 6= j, and {Xi, Zi} = 0.

b) For a CSS code built from the classical codes C1 and C2, the stabilizer is formed from generators where
the 1s in the parity check matrix of C1 have been replaced by Xs and generators where the 1s in the
parity check matrix of C2 have been replaced by Zs. Also, for a CSS code, C⊥

1 ⊆ C2 and C⊥
2 ⊆ C1.

Finally, the CSS code encodes k = k2 − (n − k1) = k1 − (n − k2) encoded qubits. That is, there are
exactly k independent vectors ~xj of C2 that are not in C⊥

1 and k independent vectors ~zj of C1 that are
not in C⊥

2 .

We therefore choose Xj to be an operator with the 1s of ~xj replaced by Xs. Since all these vectors are
in C2, the corresponding operators commute with the Z generators formed out of C⊥

2 , and none is in
C⊥

1 , so the operators are outside S.

We actually have some freedom to choose the ~zjs, as we can take any linear combination of them,
provided the full set is linearly independent. Since the ~zjs are outside of C⊥

2 , they all have nontrivial
dot product with at least one of the ~xis, and indeed, linear independence implies that the dot products
~zj · ~xi form a matrix of full rank. Therefore, we can take a linear combination of the ~zjs to product
vectors ~z′j that gives us the identity matrix ~z′j · ~xi = δij , and we can then choose Zj to be an operator
with the 1s of ~z′j replaced by Zs. By construction of the ~z′js, these operators have the right commutation
relationship with everything else, meaning this is a consistent construction of the Xjs and the Zjs.

Problem 4. Creating CSS Codes: Reed-Muller codes

a) Each of the vectors vi has weight exactly n/2, as exactly half the numbers 0, . . . , n− 1 will be 1 in any
given bit location. We can also easily show that any sum of the vis will have weight exactly n/2: The
sum will be 0 or 1 in the jth location iff the XOR of the corresponding bits of j is 0 or 1. If we look
at the XOR of any number of binary variables and run over all possible inputs, we get 0 and 1 equally.
But as j runs from 0, . . . , n − 1, the appropriate bits of j take on all possible sets of values an equal
number of times, so exactly half the bits of the sum will be 0 and half will be 1.

Adding the all-1s vector to any other vector in the code therefore also gives us a vector of weight n/2.
Thus, the code has distance n/2 = 2m−1.

b) R(r, m) is spanned by a product of vectors for each subset of up to r elements of the numbers 1, . . . ,m.
There are thus

1 +
(

m

1

)
+

(
m

2

)
+ · · ·+

(
m

r

)
(6)

different products. We do need to show that these are linearly independent to see that this is also the
number of encoded bits. We can see this by considering the extreme case of R(m,m). There are, in
this case, 2m = n different products, so to be linearly independent, we should be able to get any vector
at all. Indeed, we can imagine arbitrary vectors on 2m bits as functions from m bits to one bit. The
product of multiple vectors vi1 , . . . , vis

is the AND of the inputs i1, . . . , is, and the sum of products
is the XOR of these ANDs. We can write an arbitrary function as the XOR of ANDs of up to all
m bits, so all possible vectors are in the code R(m,m). Therefore all products of the vis are linearly
independent.

Now we wish to look at the distance. It is easy to see that the product of any r vectors vi will have
weight n/2r = 2m−r, as the product is 1 in the jth location iff the AND of the corresponding bits of
j is 1, which happens for only a fraction 1/2r of the possible values of j. We also have to check the
distance, however, for the sums of these products, and it is not clear that taking the sum cannot cause
the weight to decrease.

In fact, I claim the distance of R(r, m) is indeed 2m−r. We will show this by induction on r and m.
As m ≥ r, we will first show it for a given r for the smallest possible value of m, namely R(r, r). In

3



this case, there is nothing really to show, as the distance from the formula is 1, which is indeed the
weight of the product of all r vi vectors, and there is no possibility of having a shorter distance. We
have also shown the formula already for the base cases of R(1,m).

Suppose now we have shown the above formula for the distance of R(r − 1,m) and R(r, m), and we
wish to show it for R(r, m+1). We can consider any given sum of basis vectors, and break it up into a
term where none of the products includes the vector vm+1 and a term where all of the products include
vm+1. Now, if we restrict attention to the first 2m coordinates, the second term is uniformly 0 and the
first term is a vector from R(r, m), which we already know has weight at least 2m−r unless it is the 0
vector.

If we restrict attention to the last 2m coordinates, vm+1 is always 1, so it can be ignored, and the
second term is the sum of products of at most r−1 vectors, and is thus a vector from R(r−1,m). The
first term is an identical copy of the vector on the first 2m coordinates, and is again a vector R(r, m).
But R(r − 1,m) ⊆ R(r, m), so the sum of a term from R(r − 1,m) and a term from R(r, m) is in
R(r, m), and therefore has weight at least 2m−r. If the first term is the 0 vector, we actually have a
vector from R(r − 1,m), which therefore has weight at least 2m−r+1.

That is, the first 2m coordinates of an arbitrary vector can either be all 0, in which case the last 2m

coordinates will have weight 2m−r+1, or the first and last 2m coordinates will each have weight at
least 2m−r. Either way, we know that the overall vector has weight at least 2m+1−r, completing the
induction for the distance.

c) Let us take the dot product of two basis vectors w ∈ R(r, m) and w′ ∈ R(r′,m). The dot product is
the parity of the pointwise product ww′. But w is the pointwise product of up to r of the vi vectors,
and w′ is the pointwise product of up to r′ of the vi vectors, so ww′ is the pointwise product of up to
r + r′ of the vi vectors. Suppose we eliminate redundant vis that appear twice, and we are left with
s ≤ r + r′ vectors vi that appear in at least one of the two products w and w′. We already know from
part b that such a product has weight exactly 2m−s. Therefore the dot product of w and w′ is 0 unless
s = m, which is only possible if r + r′ ≥ m. Therefore, R(m− r − 1,m) is orthogonal to R(r, m), and
is contained in its dual.

Now, R(r, m) encodes N(r, m) =
(
m
0

)
+

(
m
1

)
+ · · ·+

(
m
r

)
bits by part b, so its dual encodes 2m−N(r, m)

bits. But R(m− r − 1,m) encodes(
m

0

)
+

(
m

1

)
+ · · ·+

(
m

m− r − 1

)
=

(
m

m

)
+

(
m

m− 1

)
+ · · ·+

(
m

r + 1

)
(7)

bits. Therefore, N(r, m) + N(m − r − 1,m) = 2m, and N(m − r − 1,m) is not only contained in the
dual of N(r, m), it is the same size as the dual, and therefore equals the dual.

d) After the previous parts, this one should be easy. We can create a CSS code out of C1 and C2 iff
C⊥

1 ⊆ C2, so we can have C1 = C2 = R(r, m) iff m− r − 1 ≤ r. That is, if 2r ≥ m− 1. In that case,
n = 2m, d = 2m−r, and k = 2N(r, m) − 2m. (We know d = 2m−r instead of being something greater
because this code is nondegenerate: the stabilizer is based on the parity check matrix of R(r, m), which
is the generator matrix of R(m− r − 1,m), which has distance 2r+1 ≥ 2m−r. Therefore the stabilizer
has no elements of low weight.)

Problem 5. Stabilizer Codes via GF(4) Codes

a) To write down the parity check matrix for the 21-register Hamming code over GF(4), we should have
three rows and write down as many vectors as we can which are not scalar multiples of each other:

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 0 0 0 0 1 1 1 1 ω ω ω ω ω2 ω2 ω2 ω2

1 0 1 ω ω2 0 1 ω ω2 0 1 ω ω2 0 1 ω ω2 0 1 ω ω2
(8)

4



We can easily check that this parity check matrix has symplectic inner product 0 between any two
rows: The first two rows differ in 8 places, the first and third rows differ in 8 places, and the second
and third rows also differ in 8 places.

b) We must take the above three vectors and ω times the above three vectors and convert them into Pauli
operators using the rule 1 7→ X, ω 7→ Z, ω2 7→ Y . (We need not take ω2 times the vectors because, as
with the 5-qubit code, that will be the sum of the original plus the ω multiple, as 1 + ω = ω2.) We get

I I I I I X X X X X X X X X X X X X X X X
I I I I I Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
I X X X X I I I I X X X X Z Z Z Z Y Y Y Y
I Z Z Z Z I I I I Z Z Z Z Y Y Y Y X X X X
X I X Z Y I X Z Y I X Z Y I X Z Y I X Z Y
Z I Z Y X I Z Y X I Z Y X I Z Y X I Z Y X

(9)

This is a [[21, 15, 3]] code. It is perfect because there are 1 + 21× 3 = 64 possible errors, and 26 = 64
possible error syndromes.

c) To write down a maximal list of r-component vectors in GF(4) with the property that none is a scalar
multiple of another, we can follow the pattern of the 21-register Hamming code. The first vector is
0 everywhere but the last component, where it is 1. The next four vectors are 0 everywhere but the
last two components. They are 1 in the next-to-last component, and the last component runs over
all four possibilities 0, 1, ω, ω2. In general, we have 4s vectors which are 0 in the first r − s − 1
positions, 1 in the (r − s)th position, and run over all possibilities in the last s positions. This gives
us 1 + 4 + 42 + · · ·+ 4r−1 different vectors, and none is a scalar multiple of any other. We can perform
the sum

r−1∑
j=0

4j = (4r − 1)/(4− 1) = (4r − 1)/3. (10)

Thus, a GF(4) Hamming code exists whenever n = (4r − 1)/3. Since no two of the columns satisfy a
linear dependency, the distance of the classical code for which these vectors give the parity check matrix
is 3. The classical code is dual using the classical notion, not the quantum notion (the symplectic inner
product), but recall that for a linear GF(4) code, the two are equivalent. Therefore, provided the code
defines a stabilizer S, N(S) corresponds exactly to the classical code with this parity check matrix,
and thus contains no nonidentity operators of weight less than 3.

We now need only show that these vectors are symplectically dual to each other. To show that the ith
row is orthogonal to the jth row under the symplectic inner product (with i < j), we can break down
the ith row into three pieces: an initial piece where it is all 0s, a middle piece where it is all 1s, and a
final piece where it varies over all possibilities in succession. The first piece occupies the coordinates
1, . . . , ai, with ai = 1+4+ · · ·+4r−i−1. The second piece occupies the coordinates ai +1, . . . , ai +4r−i.
The third piece occupies the remaining coordinates. Recall that when two GF(4) elements are the
same, or when one is 0, the symplectic dual will be 0; and when they are different and nonzero, the
symplectic dual will be 1. Also, the overall symplectic dual is the sum of the symplectic duals of the
coordinates. Below, I will talk of “commuting” and “anticommuting” vectors if the symplectic dual is
0 or 1, respectively, as if the vectors were replaced by the corresponding Pauli operators.

On the first piece of the ith row, it is always 0, so will automatically commute with the corresponding
coordinates in the jth row. Since j > i, on the second piece, the ith row is always 1 and the jth row
runs over all possibilities 0, 1, ω, and ω2 an integral number of times. When the jth row is 0 or 1,
it therefore commutes with the 1 in the ith row, and when the jth row is ω or ω2, it anticommutes
with the 1 in the ith row. Since ω and ω2 appear an equal number of times, there are an even number
of places where the second piece of the ith row anticommutes with the corresponding piece of the jth
row, and therefore those pieces commute overall.

On the third piece, the jth row also runs over all possibilities, and does so independently of the ith
row. In particular, they take on all 2-register possibilities an integral number of times; there are 10

5



possibilities where the two coordinates will commute (e.g., 01 or ωω), and 6 where they anticommute
(e.g., 1ω). Therefore, the third segment of the ith row commutes with the corresponding piece of the
jth row.

Since all three segments of the rows commute, the complete rows commute, and the parity check matrix
can be converted to a stabilizer. As we have argued above, the distance of this quantum code is 3 and
it uses n = (4r − 1)/3 qubits. The classical parity check matrix has r rows, so the stabilizer has 2r
generators (the original rows and the rows multiplied by ω), so the code encodes n− 2r qubits. This is
a perfect quantum code: there are 4r error syndromes, and there are 3n + 1 = 4r possible single-qubit
errors. As we argued in class, these are the only possible parameters for a single-error-correcting perfect
QECC.

6


