Problem Set #2

CO 639: Quantum Error Correction
Instructor: Daniel Gottesman

Due Tues., Feb. 10

Problem 1. Standard Form for Stabilizers
In this problem, we will use the representation of Pauli operators as 2n-dimensional binary vectors. In
this representation, a stabilizer with r generators is a r X 2n matrix.

a) Using Gaussian reduction (row additions, plus rearrangements of columns simultaneously on both the
left and right halves of the matrix), show that the stabilizer can always be put into the following form:
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b) Show that the submatrix F in eq. 1 has maximum rank, and that further Gaussian reduction can take
it to the form (I|E’) and C to the form (0|C”).

¢) From the standard form, explain how to immediately find a Pauli operator with a given error syndrome.
(Note, though, that this is not necessarily the smallest Pauli operator with that syndrome.)

Problem 2. Error Syndromes and Cosets
Recall that N (S) = {P|[P, M] = 0VM € S}, that S is a normal subgroup of N(S), and that the elements
of N(S)/S (i.e., cosets of S in N(S)) correspond to logical X and Z operators.

a) Show that two Pauli errors E and F have the same error syndrome for a stabilizer code S iff they are
in the same coset of N(S).

b) Suppose that for each coset of N(S) we pick some particular coset representative F and perform E
whenever syndrome measurement indicates that coset. Suppose, however, a different error F' had
actually occurred. Relate the overall action on the codespace to an element of N(5)/S.

c¢) For the 5-qubit code, we choose the coset representatives to be the single-qubit errors (and the identity
for the 0 syndrome), as there is exactly one in each coset. Use the result of part b to find the actions
resulting from the errors X773 and Y5X4Z5.

Problem 3. Logical X and Z

a) For the [[6,4,2]] code with generators X @ X @ X @ X @ X @ X and Z®ZQ® Z® Z® Z ® Z, find
possible values of the encoded X and Z operators X; and Z; (i =1,...,4).

b) Show that for a CSS code, we can always choose the X operators to be tensor products of all Xs and
the Z operators to be tensor products of all Zs.



Problem 4. Creating CSS Codes: Reed-Muller codes

a)

c)
d)

The (classical) 1st order Reed-Muller codes R(1,m) are linear codes on n = 2™ bits, and have generator
matrices whose rows are the all-1s vector and the vectors v; (i = 1,...,m), where the jth coordinate
of v; is equal to the ith bit of j, when j is expanded in binary (and assuming j runs from 0 to n — 1).
For instance, for n = 4, v; = (0011) and vy = (0101). R(1,m) has k = m + 1 encoded bits. What is
its distance?

The rth order Reed-Muller code R(r,m) has as rows of its generator matrix all products of up to r
of the vectors v;, where product means the bitwise product (1 iff all vectors in the product are 1 at
a given coordinate), so for instance, R(2,m) has the additional generator vivy = (0001). (The all-1s
generator is also included as, in some sense, the product of 0 of the v;’s.) How many bits does R(r, m)
encode? What is the distance of R(r,m)?

Show that the dual of R(r,m) is R(m —r —1,m) (r <m —1).

When can you make a CSS code out of two copies of R(r,m) (one each for the X part and the Z part),
and what are its parameters [[n, k, d]]?

Problem 5. Stabilizer Codes via GF(4) Codes
The Hamming codes over GF(4) are given by writing down parity check matrices with r rows whose
columns are not scalar multiples of each other (i.e., not the same and not multiples of w or w?).

a)

b)
c)

Write down the 21-register GF(4) Hamming code. Show that it satisfies the symplectic duality condi-
tion.

Write down the stabilizer for a 21-qubit perfect code.

Show that the GF(4) Hamming codes exist when n = (4" — 1)/3, and that they satisfy the symplectic
duality condition and therefore define stabilizer codes. Show that the distance of these quantum codes
is 3 and conclude that perfect quantum codes exist for all of these values of n (r > 2).



