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Abstract
In this paper, I try once again to cause some good-natured trouble. The issue remains, when

will we ever stop burdening the taxpayer with conferences devoted to the quantum foundations?
The suspicion is expressed that no end will be in sight until a means is found to reduce quantum
theory to two or three statements of crisp physical (rather than abstract, axiomatic) significance.
In this regard, no tool appears better calibrated for a direct assault than quantum information
theory. Far from a strained application of the latest fad to a time-honored problem, this method
holds promise precisely because a large part—but not all—of the structure of quantum theory
has always concerned information. It is just that the physics community needs reminding.

This paper, though taking quant-ph/0106166 as its core, corrects one mistake and offers sev-
eral observations beyond the previous version. In particular, I identify one element of quantum
mechanics that I would not label a subjective term in the theory—it is the integer parameter
D traditionally ascribed to a quantum system via its Hilbert-space dimension.

1 Introduction 1

Quantum theory as a weather-sturdy structure has been with us for 75 years now. Yet, there
is a sense in which the struggle for its construction remains. I say this because one can check that
not a year has gone by in the last 30 when there was not a meeting or conference devoted to some
aspect of the quantum foundations. Our meeting in Växjö, “Quantum Theory: Reconsideration of
Foundations,” is only one in a long, dysfunctional line.

But how did this come about? What is the cause of this year-after-year sacrifice to the “great
mystery?” Whatever it is, it cannot be for want of a self-ordained solution: Go to any meeting,
and it is like being in a holy city in great tumult. You will find all the religions with all their priests
pitted in holy war—the Bohmians [3], the Consistent Historians [4], the Transactionalists [5], the
Spontaneous Collapseans [6], the Einselectionists [7], the Contextual Objectivists [8], the outright
Everettics [9, 10], and many more beyond that. They all declare to see the light, the ultimate light.
Each tells us that if we will accept their solution as our savior, then we too will see the light.

1This paper, though substantially longer, should be viewed as a continuation and amendment to Ref. [1]. Details of
the changes can be found in the Appendix to the present paper, Section 11. Substantial further arguments defending
a transition from the “objective Bayesian” stance implicit in Ref. [1] to the “subjective Bayesian” stance implicit
here can be found in Ref. [2].
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A Fraction of the Quantum Foundations Meetings since 1972

1972 The Development of the Physicist’s Conception of Nature, Trieste, Italy
1973 Foundations of Quantum Mechanics and Ordered Linear Spaces,

Marburg, Germany
1974 Quantum Mechanics, a Half Century Later, Strasbourg, France
1975 Foundational Problems in the Special Sciences, London, Canada
1976 International Symposium on Fifty Years of the Schrödinger Equation,

Vienna, Austria
1977 International School of Physics “Enrico Fermi”, Course LXXII:

Problems in the Foundations of Physics, Varenna, Italy
1978 Stanford Seminar on the Foundations of Quantum Mechanics, Stanford, USA
1979 Interpretations and Foundations of Quantum Theory, Marburg, Germany
1980 Quantum Theory and the Structures of Time and Space, Tutzing, Germany
1981 NATO Advanced Study Institute on Quantum Optics, Experimental

Gravitation, and Measurement Theory, Bad Windsheim, Germany
1982 The Wave-Particle Dualism: a Tribute to Louis de Broglie, Perugia, Italy
1983 Foundations of Quantum Mechanics in the Light of New Technology,

Tokyo, Japan
1984 Fundamental Questions in Quantum Mechanics, Albany, New York
1985 Symposium on the Foundations of Modern Physics: 50 Years of

the Einstein-Podolsky-Rosen Gedankenexperiment, Joensuu, Finland
1986 New Techniques and Ideas in Quantum Measurement Theory, New York, USA
1987 Symposium on the Foundations of Modern Physics 1987: The Copenhagen

Interpretation 60 Years after the Como Lecture, Joensuu, Finland
1988 Bell’s Theorem, Quantum Theory, and Conceptions of the Universe,

Washington, DC, USA
1989 Sixty-two Years of Uncertainty: Historical, Philosophical and

Physical Inquiries into the Foundations of Quantum Mechanics, Erice, Italy
1990 Symposium on the Foundations of Modern Physics 1990: Quantum Theory of

Measurement and Related Philosophical Problems, Joensuu, Finland
1991 Bell’s Theorem and the Foundations of Modern Physics, Cesena, Italy
1992 Symposia on the Foundations of Modern Physics 1992: The Copenhagen

Interpretation and Wolfgang Pauli, Helsinki, Finland
1993 International Symposium on Fundamental Problems in Quantum Physics,

Oviedo, Spain
1994 Fundamental Problems in Quantum Theory, Baltimore, USA
1995 The Dilemma of Einstein, Podolsky and Rosen, 60 Years Later, Haifa, Israel
1996 2nd International Symposium on Fundamental Problems in Quantum Physics,

Oviedo, Spain
1997 Sixth UK Conference on Conceptual and Mathematical Foundations of

Modern Physics, Hull, England
1998 Mysteries, Puzzles, and Paradoxes in Quantum Mechanics, Garda Lake, Italy
1999 2nd Workshop on Fundamental Problems in Quantum Theory, Baltimore, USA
2000 NATO Advanced Research Workshop on Decoherence and its Implications

in Quantum Computation and Information Transfer, Mykonos, Greece
2001 Quantum Theory: Reconsideration of Foundations, Växjö, Sweden

But there has to be something wrong with this! If any of these priests had truly shown the light,
there simply would not be the year-after-year conference. The verdict seems clear enough: If we—
i.e., the set of people who might be reading this paper—really care about quantum foundations,
then it behooves us as a community to ask why these meetings are happening and find a way to
put a stop to them.

My view of the problem is this. Despite the accusations of incompleteness, nonsensicality,
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irrelevance, and surreality one often sees one religion making against the other, I see little to no
difference in any of their canons. They all look equally detached from the world of quantum
practice to me. For, though each seems to want a firm reality within the theory—i.e., a single God
they can point to and declare, “There, that term is what is real in the universe even when there
are no physicists about”—none have worked very hard to get out of the Platonic realm of pure
mathematics to find it.

What I mean by this deliberately provocative statement is that in spite of the differences in
what the churches label2 to be “real” in quantum theory,3 they nonetheless all proceed from the
same abstract starting point—the standard textbook accounts of the axioms of quantum theory.4

The Canon for Most of the Quantum Churches:
The Axioms (plain and simple)

1. For every system, there is a complex Hilbert space H.

2. States of the system correspond to projection operators onto H.

3. Those things that are observable somehow correspond to the
eigenprojectors of Hermitian operators.

4. Isolated systems evolve according to the Schrödinger equation.
...

“But what nonsense is this,” you must be asking. “Where else could they start?” The main issue
is this, and no one has said it more clearly than Carlo Rovelli [11]. Where present-day quantum-
foundation studies have stagnated in the stream of history is not so unlike where the physics of
length contraction and time dilation stood before Einstein’s 1905 paper on special relativity.

The Lorentz transformations have the name they do, rather than, say, the Einstein transforma-
tions, for good reason: Lorentz had published some of them as early as 1895. Indeed one could say
that most of the empirical predictions of special relativity were in place well before Einstein came
onto the scene. But that was of little consolation to the pre-Einsteinian physics community striving
so hard to make sense of electromagnetic phenomena and the luminiferous ether. Precisely because
the only justification for the Lorentz transformations appeared to be their empirical adequacy, they
remained a mystery to be conquered. More particularly, this was a mystery that heaping further
ad hoc (mathematical) structure onto could not possibly solve.

2Or add to the theory, as the case may be.
3Very briefly, a cartoon of some of the positions might be as follows. For the Bohmians, “reality” is captured

by supplementing the state vector with an actual trajectory in coordinate space. For the Everettics, it is the
universal wave function and the universe’s Hamiltonian. (Depending upon the persuasion, though, these two entities
are sometimes supplemented with the terms in various Schmidt decompositions of the universal state vector with
respect to various preconceived tensor-product structures.) For the Spontaneous Collapsians it is again the state
vector—though now for the individual system—but Hamiltonian dynamics is supplemented with an objective collapse
mechanism. For the Consistent Historians “reality” is captured with respect to an initial quantum state and a
Hamiltonian by the addition of a set of preferred positive-operator valued measures (POVMs)—they call them
consistent sets of histories—along with a truth-value assignment within each of those sets.

4To be fair, they do, each in their own way, contribute minor modifications to the meanings of a few words in the
axioms. But that is essentially where the effort stops.
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What was being begged for in the years between 1895 and 1905 was an understanding of
the origin of that abstract, mathematical structure—some simple, crisp physical statements with
respect to which the necessity of the mathematics would be indisputable. Einstein supplied that
and became one of the greatest physicists of all time. He reduced the mysterious structure of the
Lorentz transformations to two simple statements expressible in common language:

1) the speed of light in empty space is independent of the speed of its source,
2) physics should appear the same in all inertial reference frames.

The deep significance of this for the quantum problem should stand up and speak overpoweringly
to anyone who admires these principles.

Einstein’s move effectively stopped all further debate on the origins of the Lorentz transforma-
tions. Outside of the time of the Nazi regime in Germany [12], I suspect there have been less than
a handful of conferences devoted to “interpreting” them. Most importantly, with the supreme sim-
plicity of Einstein’s principles, physics became ready for “the next step.” Is it possible to imagine
that any mind—even Einstein’s—could have made the leap to general relativity directly from the
original, abstract structure of the Lorentz transformations? A structure that was only empirically
adequate? I would say no. Indeed, one can dream of the wonders we will find in pursuing the same
strategy of simplification for the quantum foundations.

Symbolically, where we are: Where we need to be:

x′ =
x− vt√
1− v2/c2

Speed of light
is constant.

t′ =
t− vx/c2

√
1− v2/c2

Physics is the same
in all inertial frames.

The task is not to make sense of the quantum axioms by heaping more structure, more defini-
tions, more science-fiction imagery on top of them, but to throw them away wholesale and start
afresh. We should be relentless in asking ourselves: From what deep physical principles might we
derive this exquisite mathematical structure? Those principles should be crisp; they should be
compelling. They should stir the soul. When I was in junior high school, I sat down with Martin
Gardner’s book Relativity for the Million [13] and came away with an understanding of the subject
that sustains me today: The concepts were strange, but they were clear enough that I could get
a grasp on them knowing little more mathematics than simple arithmetic. One should expect no
less for a proper foundation to quantum theory. Until we can explain quantum theory’s essence to
a junior-high-school or high-school student and have them walk away with a deep, lasting memory,
we will have not understood a thing about the quantum foundations.

So, throw the existing axioms of quantum mechanics away and start afresh! But how to pro-
ceed? I myself see no alternative but to contemplate deep and hard the tasks, the techniques, and
the implications of quantum information theory. The reason is simple, and I think inescapable.
Quantum mechanics has always been about information. It is just that the physics community has
somehow forgotten this.
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Quantum Mechanics:
The Axioms and Our Imperative!

States correspond to density Give an information theoretic
operators ρ over a Hilbert space H. reason if possible!

Measurements correspond to positive
operator-valued measures (POVMs) Give an information theoretic
{Ed} on H. reason if possible!

H is a complex vector space,
not a real vector space, not a Give an information theoretic
quaternionic module. reason if possible!

Systems combine according to the tensor
product of their separate vector Give an information theoretic
spaces, HAB = HA ⊗HB. reason if possible!

Between measurements, states evolve
according to trace-preserving completely Give an information theoretic
positive linear maps. reason if possible!

By way of measurement, states evolve
(up to normalization) via outcome- Give an information theoretic
dependent completely positive linear maps. reason if possible!

Probabilities for the outcomes
of a measurement obey the Born rule Give an information theoretic
for POVMs tr(ρEd). reason if possible!

The distillate that remains—the piece of quantum theory with no information
theoretic significance—will be our first unadorned glimpse of “quantum reality.”
Far from being the end of the journey, placing this conception of nature in open
view will be the start of a great adventure.

This, I see as the line of attack we should pursue with relentless consistency: The quantum
system represents something real and independent of us; the quantum state represents a collection
of subjective degrees of belief about something to do with that system (even if only in connection
with our experimental kicks to it).5 The structure called quantum mechanics is about the interplay
of these two things—the subjective and the objective. The task before us is to separate the wheat

5“But physicists are, at bottom, a naive breed, forever trying to come to terms with the ‘world out there’ by
methods which, however imaginative and refined, involve in essence the same element of contact as a well-placed
kick.” — B. S. DeWitt and R. N. Graham [14]
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from the chaff. If the quantum state represents subjective information, then how much of its
mathematical support structure might be of that same character? Some of it, maybe most of it,
but surely not all of it.

Our foremost task should be to go to each and every axiom of quantum theory and give it an
information theoretic justification if we can. Only when we are finished picking off all the terms (or
combinations of terms) that can be interpreted as subjective information will we be in a position
to make real progress in quantum foundations. The raw distillate left behind—minuscule though it
may be with respect to the full-blown theory—will be our first glimpse of what quantum mechanics
is trying to tell us about nature itself.

Let me try to give a better way to think about this by making use of Einstein again. What
might have been his greatest achievement in building general relativity? I would say it was in
his recognizing that the “gravitational field” one feels in an accelerating elevator is a coordinate
effect. That is, the “field” in that case is something induced purely with respect to the description
of an observer. In this light, the program of trying to develop general relativity boiled down to
recognizing all the things within gravitational and motional phenomena that should be viewed as
consequences of our coordinate choices. It was in identifying all the things that are “numerically
additional” [15] to the observer-free situation—i.e., those things that come about purely by bringing
the observer (scientific agent, coordinate system, etc.) back into the picture.

This was a true breakthrough. For in weeding out all the things that can be interpreted as
coordinate effects, the fruit left behind finally becomes clear to sight: It is the Riemannian manifold
we call spacetime—a mathematical object, the study of which one can hope will tell us something
about nature itself, not merely about the observer in nature.

The dream I see for quantum mechanics is just this. Weed out all the terms that have to do
with gambling commitments, information, knowledge, and belief, and what is left behind will play
the role of Einstein’s manifold. That is our goal. When we find it, it may be little more than
a minuscule part of quantum theory. But being a clear window into nature, we may start to see
sights through it we could hardly imagine before.6

2 Summary

I say to the House as I said to ministers who have joined
this government, I have nothing to offer but blood, toil,
tears, and sweat. We have before us an ordeal of the most
grievous kind. We have before us many, many months of
struggle and suffering. You ask, what is our policy? I say
it is to wage war. War with all our might and with all the
strength God has given us. You ask, what is our aim? I
can answer in one word. It is victory.

— Winston Churchill, 1940, abridged

This paper is about taking the imperative in the Introduction seriously, though it contributes
only a small amount to the labor it asks. Just as in the founding of quantum mechanics, this is

6I should point out to the reader that in opposition to the picture of general relativity, where reintroducing the
coordinate system—i.e., reintroducing the observer—changes nothing about the manifold (it only tells us what kind
of sensations the observer will pick up), I do not suspect the same for the quantum world. Here I suspect that
reintroducing the observer will be more like introducing matter into pure spacetime, rather than simply gridding
it off with a coordinate system. “Matter tells spacetime how to curve (when matter is there), and spacetime tells
matter how to move (when matter is there).” [16] Observers, scientific agents, a necessary part of reality? No. But
do they tend to change things once they are on the scene? Yes. If quantum mechanics can tell us something truly
deep about nature, I think it is this.
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not something that will spring forth from a lone mind in the shelter of a medieval college.7 It
is a task for a community with diverse but productive points of view. The quantum information
community is nothing if not that.8 “Philosophy is too important to be left to the philosophers,”
John Archibald Wheeler once said. Likewise, I am apt to say for the quantum foundations.

The structure of the remainder of the paper is as follows. In Section 3 “Why Information?,”
I reiterate the cleanest argument I know of that the quantum state is solely an expression of
subjective information—the information one has about a quantum system. It has no objective
reality in and of itself.9 The argument is then refined by considering the phenomenon of quantum
teleportation [23].

In Section 4 “Information About What?,” I tackle that very question [24] head-on. The
answer is “the potential consequences of our experimental interventions into nature.” Once freed
from the notion that quantum measurement ought to be about revealing traces of some preex-
isting property [25] (or beable [26]), one finds no particular reason to take the standard account
of measurement (in terms of complete sets of orthogonal projection operators) as a basic notion.
Indeed quantum information theory, with its emphasis on the utility of generalized measurements
or positive operator-valued measures (POVMs) [27], suggests one should take those entities as the
basic notion instead. The productivity of this point of view is demonstrated by the enticingly
simple Gleason-like derivation of the quantum probability rule recently found by Paul Busch [28]
and, independently, by Joseph Renes and collaborators [29]. Contrary to Gleason’s original theo-
rem [30], this theorem works just as well for two-dimensional Hilbert spaces, and even for Hilbert
spaces over the field of rational numbers. In Section 4.1, I give a strengthened argument for the
noncontextuality assumption in this theorem. In Section 4.2, “Le Bureau International des Poids
et Mesures à Paris,” I start the process of defining what it means—from the Bayesian point of
view—to accept quantum mechanics as a theory. This leads to the notion of fixing a fiducial or
standard quantum measurement for defining the very meaning of a quantum state.

In Section 5 “Wither Entanglement?,” I ask whether entanglement is all it is touted to be as
far as quantum foundations are concerned. That is, is entanglement really as Schrödinger said, “the
characteristic trait of quantum mechanics, the one that enforces its entire departure from classical
lines of thought?” To combat this, I give a simple derivation of the tensor-product rule for combining
Hilbert spaces of individual systems which takes the structure of localized quantum measurements
as its starting point. In particular, the derivation makes use of Gleason-like considerations in the

7If you want to know what this means, ask me over a beer sometime.
8There have been other soundings of the idea that information and computation theory can tell us something deep

about the foundations of quantum mechanics. See Refs. [17], [18], [19], and in particular Ref. [20].
9In the previous version of this paper, quant-ph/0106166, I variously called quantum states “information” and

“states of knowledge” and did not emphasize so much the “radical” Bayesian idea that the probability one ascribes to
a phenomenon amounts to nothing more than the gambling commitments one is willing to make with regard to that
phenomenon. To the “radical” Bayesian, probabilities are subjective all the way to the bone. In this paper, I start the
long process of trying to turn my earlier de-emphasis around (even though it is somewhat dangerous to attempt this
in a manuscript that is little more than a modification of an already completed paper). In particular, because of the
objective overtones of the word “knowledge”—i.e., that a particular piece of knowledge is either “right” or “wrong”—I
try to steer clear from the term as much as possible in the present version. The conception working in the background
of this paper is that there is simply no such thing as a “right and true” quantum state. In all cases, a quantum state
is specifically and only a mathematical symbol for capturing a set of beliefs or gambling commitments. Thus I now
variously call quantum states “beliefs,” “states of belief,” “information” (though, by this I mean “information” in a
more subjective sense than is becoming common in the quantum information community), “judgments,” “opinions,”
and “gambling commitments.” Believe me, I already understand well the number of jaws that will drop from the
adoption of this terminology. However, if the reader finds that this gives him a sense of butterflies in the stomach—or
fears that I will become a solipsist [21] or a crystal-toting New Age practitioner of homeopathic medicine [22]—I hope
he will keep in mind that this attempt to be absolutely frank about the subjectivity of some of the terms in quantum
theory is part of a larger program to delimit the terms that can be interpreted as objective in a fruitful way.
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presence of classical communication. With the tensor-product structure established, the very notion
of entanglement follows in step. This shows how entanglement, just like the standard probability
rule, is secondary to the structure of quantum measurements. Moreover, “locality” is built in at
the outset; there is simply nothing mysterious and nonlocal about entanglement.

In Section 6 “Whither Bayes Rule?,” I ask why one should expect the rule for updating
quantum state assignments upon the completion of a measurement to take the form it actually
does. Along the way, I give a simple derivation that one’s information always increases on average
for any quantum mechanical measurement that does not itself discard information. (Despite the
appearance otherwise, this is not a tautology!) Most importantly, the proof technique used for
showing the theorem indicates an extremely strong analogy between quantum collapse and Bayes’
rule in classical probability theory: Up to an overall unitary “readjustment” of one’s final proba-
bilistic beliefs—the readjustment takes into account one’s initial state for the system as well as one’s
description of the measurement interaction—quantum collapse is precisely Bayesian conditional-
ization. This in turn gives more impetus for the assumptions behind the Gleason-like theorems of
the previous two sections. In Section 6.1, “Accepting Quantum Mechanics,” I complete the process
started in Section 4.2 and describe quantum measurement in Bayesian terms: An everyday mea-
surement is any I-know-not-what that leads to an application of Bayes rule with respect to one’s
belief about the potential outcome of the standard quantum measurement.

In Section 7, “What Else is Information?,” I argue that, to the extent that a quantum state
is a subjective quantity, so must be the assignment of a state-change rule ρ → ρd for describing
what happens to an initial quantum state upon the completion of a measurement—generally some
POVM—whose outcome is d. In fact, the levels of subjectivity for the state and the state-change
rule must be precisely the same for consistency’s sake. To draw an analogy to Bayesian probability
theory, the initial state ρ plays the role of an a priori probability distribution P (h) for some
hypothesis, the final state ρd plays the role of a posterior probability distribution P (h|d), and the
state-change rule ρ → ρd plays the role of the “statistical model” P (d|h) enacting the transition
P (h) → P (h|d). To the extent that all Bayesian probabilities are subjective—even the probabilities
P (d|h) of a statistical model—so is the mapping ρ → ρd. Specializing to the case that no information
is gathered, one finds that the trace-preserving completely positive maps that describe quantum
time-evolution are themselves nothing more than subjective judgments.

In Section 8 “Intermission,” I give a slight breather to sum up what has been trashed and
where we are headed.

In Section 9 “Unknown Quantum States?,” I tackle the conundrum posed by these very
words. Despite the phrase’s ubiquitous use in the quantum information literature, what can
an unknown state be? A quantum state—from the present point of view, explicitly someone’s
information—must always be known by someone, if it exists at all. On the other hand, for many
an application in quantum information, it would be quite contrived to imagine that there is always
someone in the background describing the system being measured or manipulated, and that what
we are doing is grounding the phenomenon with respect to his state of belief. The solution, at
least in the case of quantum-state tomography [31], is found through a quantum mechanical version
of de Finetti’s classic theorem on “unknown probabilities.” This reports work from Refs. [32] and
[33]. Maybe one of the most interesting things about the theorem is that it fails for Hilbert spaces
over the field of real numbers, suggesting that perhaps the whole discipline of quantum information
might not be well defined in that imaginary world.

Finally, in Section 10 “The Oyster and the Quantum,” I flirt with the most tantalizing
question of all: Why the quantum? There is no answer here, but I do not discount that we are
on the brink of finding one. In this regard no platform seems firmer for the leap than the very
existence of quantum cryptography and quantum computing. The world is sensitive to our touch.

8



It has a kind of “Zing!”10 that makes it fly off in ways that were not imaginable classically. The
whole structure of quantum mechanics—it is speculated—may be nothing more than the optimal
method of reasoning and processing information in the light of such a fundamental (wonderful)
sensitivity. As a concrete proposal for a potential mathematical expression of “Zing!,” I consider
the integer parameter D traditionally ascribed to a quantum system by way of its Hilbert-space
dimension.

3 Why Information?

Realists can be tough customers indeed—but there is no
reason to be afraid of them.

— Paul Feyerabend, 1992

Einstein was the master of clear thought; I have expressed my opinion of this with respect to
both special and general relativity. But I can go further. I would say he possessed the same great
penetrating power when it came to analyzing the quantum. For even there, he was immaculately
clear and concise in his expression. In particular, he was the first person to say in absolutely
unambiguous terms why the quantum state should be viewed as information (or, to say the same
thing, as a representation of one’s beliefs and gambling commitments, credible or otherwise).

His argument was simply that a quantum-state assignment for a system can be forced to go one
way or the other by interacting with a part of the world that should have no causal connection with
the system of interest. The paradigm here is of course the one well known through the Einstein,
Podolsky, Rosen paper [34], but simpler versions of the train of thought had a long pre-history with
Einstein [35] himself.

The best was in essence this. Take two spatially separated systems A and B prepared in
some entangled quantum state |ψAB〉. By performing the measurement of one or another of two
observables on system A alone, one can immediately write down a new state for system B. Either
the state will be drawn from one set of states {|φB

i 〉} or another {|ηB
i 〉}, depending upon which

observable is measured.11 The key point is that it does not matter how distant the two systems are
from each other, what sort of medium they might be immersed in, or any of the other fine details
of the world. Einstein concluded that whatever these things called quantum states be, they cannot
be “real states of affairs” for system B alone. For, whatever the real, objective state of affairs at B
is, it should not depend upon the measurements one can make on a causally unconnected system
A.

Thus one must take it seriously that the new state (either a |φB
i 〉 or a |ηB

i 〉) represents information
about system B. In making a measurement on A, one learns something about B, but that is where
the story ends. The state change cannot be construed to be something more physical than that.
More particularly, the final state itself for B cannot be viewed as more than a reflection of some
tricky combination of one’s initial information and the knowledge gained through the measurement.
Expressed in the language of Einstein, the quantum state cannot be a “complete” description of
the quantum system.

Here is the way Einstein put it to Michele Besso in a 1952 letter [37]:
10Dash, verve, vigor, vim, zip, pep, punch, pizzazz!
11Generally there need be hardly any relation between the two sets of states: only that when the states are

weighted by their probabilities, they mix together to form the initial density operator for system B alone. For a
precise statement of this freedom, see Ref. [36].
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What relation is there between the “state” (“quantum state”) described by a function ψ
and a real deterministic situation (that we call the “real state”)? Does the quantum state
characterize completely (1) or only incompletely (2) a real state?

One cannot respond unambiguously to this question, because each measurement represents
a real uncontrollable intervention in the system (Heisenberg). The real state is not therefore
something that is immediately accessible to experience, and its appreciation always rests hypo-
thetical. (Comparable to the notion of force in classical mechanics, if one doesn’t fix a priori
the law of motion.) Therefore suppositions (1) and (2) are, in principle, both possible. A de-
cision in favor of one of them can be taken only after an examination and confrontation of the
admissibility of their consequences.

I reject (1) because it obliges us to admit that there is a rigid connection between parts of
the system separated from each other in space in an arbitrary way (instantaneous action at a
distance, which doesn’t diminish when the distance increases). Here is the demonstration:

A system S12, with a function ψ12, which is known, is composed of two systems S1, and S2,
which are very far from each other at the instant t. If one makes a “complete” measurement
on S1, which can be done in different ways (according to whether one measures, for example,
the momenta or the coordinates), depending on the result of the measurement and the function
ψ12, one can determine by current quantum-theoretical methods, the function ψ2 of the second
system. This function can assume different forms, according to the procedure of measurement
applied to S1.

But this is in contradiction with (1) if one excludes action at a distance. Therefore the
measurement on S1 has no effect on the real state S2, and therefore assuming (1) no effect on
the quantum state of S2 described by ψ2.

I am thus forced to pass to the supposition (2) according to which the real state of a system
is only described incompletely by the function ψ12.

If one considers the method of the present quantum theory as being in principle definitive,
that amounts to renouncing a complete description of real states. One could justify this re-
nunciation if one assumes that there is no law for real states—i.e., that their description would
be useless. Otherwise said, that would mean: laws don’t apply to things, but only to what
observation teaches us about them. (The laws that relate to the temporal succession of this
partial knowledge are however entirely deterministic.)

Now, I can’t accept that. I think that the statistical character of the present theory is simply
conditioned by the choice of an incomplete description.

There are two issues in this letter that are worth disentangling. 1) Rejecting the rigid connection
of all nature12—that is to say, admitting that the very notion of separate systems has any meaning
at all—one is led to the conclusion that a quantum state cannot be a complete specification of
a system. It must be information, at least in part. This point should be placed in contrast to
the other well-known facet of Einstein’s thought: namely, 2) an unwillingness to accept such an
“incompleteness” as a necessary trait of the physical world.

It is quite important to recognize that the first issue does not entail the second. Einstein had
that firmly in mind, but he wanted more. His reason for going the further step was, I think, well
justified at the time [38]:

There exists . . . a simple psychological reason for the fact that this most nearly obvious
interpretation is being shunned. For if the statistical quantum theory does not pretend to
describe the individual system (and its development in time) completely, it appears unavoidable

12The rigid connection of all nature, on the other hand, is exactly what the Bohmians and Everettics do embrace,
even glorify. So, I suspect these words will fall on deaf ears with them. But similarly would they fall on deaf ears
with the believer who says that God wills each and every event in the universe and no further explanation is needed.
No point of view should be dismissed out of hand: the overriding issue is simply which view will lead to the most
progress, which view has the potential to close the debate, which view will give the most new phenomena for the
physicist to have fun with?
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to look elsewhere for a complete description of the individual system; in doing so it would be
clear from the very beginning that the elements of such a description are not contained within
the conceptual scheme of the statistical quantum theory. With this one would admit that, in
principle, this scheme could not serve as the basis of theoretical physics.

But the world has seen much in the mean time. The last seventeen years have given confirmation
after confirmation that the Bell inequality (and several variations of it) are indeed violated by the
physical world. The Kochen-Specker no-go theorems have been meticulously clarified to the point
where simple textbook pictures can be drawn of them [39]. Incompleteness, it seems, is here to
stay: The theory prescribes that no matter how much we know about a quantum system—even
when we have maximal information about it 13 —there will always be a statistical residue. There
will always be questions that we can ask of a system for which we cannot predict the outcomes. In
quantum theory, maximal information is simply not complete information [40]. But neither can it be
completed. As Wolfgang Pauli once wrote to Markus Fierz [41], “The well-known ‘incompleteness’
of quantum mechanics (Einstein) is certainly an existent fact somehow-somewhere, but certainly
cannot be removed by reverting to classical field physics.” Nor, I would add, will the mystery of
that “existent fact” be removed by attempting to give the quantum state anything resembling an
ontological status.

The complete disconnectedness of the quantum-state change rule from anything to do with
spacetime considerations is telling us something deep: The quantum state is information. Subjec-
tive, incomplete information. Put in the right mindset, this is not so intolerable. It is a statement
about our world. There is something about the world that keeps us from ever getting more infor-
mation than can be captured through the formal structure of quantum mechanics. Einstein had
wanted us to look further—to find out how the incomplete information could be completed—but
perhaps the real question is, “Why can it not be completed?”

Indeed I think this is one of the deepest questions we can ask and still hope to answer. But first
things first. The more immediate question for anyone who has come this far—and one that deserves
to be answered forthright—is what is this information symbolized by a |ψ〉 actually about? I have
hinted that I would not dare say that it is about some kind of hidden variable (as the Bohmian
might) or even about our place within the universal wavefunction (as the Everettic might).

Perhaps the best way to build up to an answer is to be true to the theme of this paper:
quantum foundations in the light of quantum information. Let us forage the phenomena of quantum
information to see if we might first refine Einstein’s argument. One need look no further than to the
phenomenon of quantum teleportation [23]. Not only can a quantum-state assignment for a system
be forced to go one way or the other by interacting with another part of the world of no causal
significance, but, for the cost of two bits, one can make that quantum state assignment anything
one wants it to be.

Such an experiment starts out with Alice and Bob sharing a maximally entangled pair of qubits
in the state

|ψAB〉 =
√

1
2

(|0〉|0〉+ |1〉|1〉) . (1)

Bob then goes to any place in the universe he wishes. Alice in her laboratory prepares another
qubit with any state |ψ〉 that she ultimately wants to impart onto Bob’s system. She performs a
Bell-basis measurement on the two qubits in her possession. In the same vein as Einstein’s thought

13As should be clear from all my warnings, I am no longer entirely pleased with this terminology. I would now,
for instance, refer to a pure quantum state as a “maximally rigid gambling commitment” or some such thing. See
Ref. [2], pages 49–50 and 53–54. However, after trying to reconstruct this paragraph several times to be in conformity
with my new terminology, I finally decided that a more accurate representation would break the flow of the section
even more than this footnote!

11



experiment, Bob’s system immediately takes on the character of one of the states |ψ〉, σx|ψ〉, σy|ψ〉,
or σz|ψ〉. But that is only insofar as Alice is concerned.14 Since there is no (reasonable) causal
connection between Alice and Bob, it must be that these states represent the possibilities for Alice’s
updated beliefs about Bob’s system.

If now Alice broadcasts the result of her measurement to the world, Bob may complete the
teleportation protocol by performing one of the four Pauli rotations (I, σx, σy, σz) on his system,
conditioning it on the information he receives. The result, as far as Alice is concerned, is that Bob’s
system finally resides predictably in the state |ψ〉.1516

How can Alice convince herself that such is the case? Well, if Bob is willing to reveal his location,
she just need walk to his site and perform the YES-NO measurement: |ψ〉〈ψ| vs. I − |ψ〉〈ψ|. The
outcome will be a YES with probability one for her if all has gone well in carrying out the protocol.
Thus, for the cost of a measurement on a causally disconnected system and two bits worth of causal
action on the system of actual interest—i.e., one of the four Pauli rotations—Alice can sharpen her
predictability to complete certainty for any YES-NO observable she wishes.

Roger Penrose argues in his book The Emperor’s New Mind [42] that when a system “has”
a state |ψ〉 there ought to be some property in the system (in and of itself) that corresponds to
its “|ψ〉’ness.” For how else could the system be prepared to reveal a YES in the case that Alice
actually checks it? Asking this rhetorical question with a sufficient amount of command is enough
to make many a would-be informationist weak in knees. But there is a crucial oversight implicit
in its confidence, and we have already caught it in action. If Alice fails to reveal her information
to anyone else in the world, there is no one else who can predict the qubit’s ultimate revelation
with certainty. More importantly, there is nothing in quantum mechanics that gives the qubit the
power to stand up and say YES all by itself: If Alice does not take the time to walk over to it and
interact with it, there is no revelation. There is only the confidence in Alice’s mind that, should
she interact with it, she could predict the consequence 17 of that interaction.

4 Information About What?

I think that the sickliest notion of physics, even if a student
gets it, is that it is ‘the science of masses, molecules, and
the ether.’ And I think that the healthiest notion, even if a
student does not wholly get it, is that physics is the science
of the ways of taking hold of bodies and pushing them!

— W. S. Franklin, 1903

There are great rewards in being a new parent. Not least of all is the opportunity to have a
close-up look at a mind in formation. Last year, I watched my two-year old daughter learn things
at a fantastic rate, and though there were untold lessons for her, there were also a sprinkling for
me. For instance, I started to see her come to grips with the idea that there is a world independent

14As far as Bob is concerned, nothing whatsoever changes about the system in his possession: It started in the
completely mixed state ρ = 1

2
I and remains that way.

15As far as Bob is concerned, nothing whatsoever changes about the system in his possession: It started in the
completely mixed state ρ = 1

2
I and remains that way.

16The repetition in these footnotes is not a typographical error.
17I adopt this terminology to be similar to L. J. Savage’s book, Ref. [43], Chapter 2, where he discusses the terms

“the person,” “the world,” “consequences,” “acts,” and “decisions,” in the context of rational decision theory. “A
consequence is anything that may happen to the person,” Savage writes, where we add “when he acts via the
capacity of a quantum measurement.” In this paper, I call what Savage calls “the person” the agent, scientific agent,
or observer instead.
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of her desires. What struck me was the contrast between that and the gain of confidence I also saw
grow in her that there are aspects of existence she could control. The two go hand in hand. She
pushes on the world, and sometimes it gives in a way that she has learned to predict, and sometimes
it pushes back in a way she has not foreseen (and may never be able to). If she could manipulate
the world to the complete desires of her will—I became convinced—there would be little difference
between wake and dream.

The main point is that she learns from her forays into the world. In my cynical moments, I
find myself thinking, “How can she think that she’s learned anything at all? She has no theory
of measurement. She leaves measurement completely undefined. How can she have a stake to
knowledge if she does not have a theory of how she learns?”

Hideo Mabuchi once told me, “The quantum measurement problem refers to a set of people.”
And though that is a bit harsh, maybe it also contains a bit of the truth. With the physics
community making use of theories that tend to last between 100 and 300 years, we are apt to
forget that scientific views of the world are built from the top down, not from the bottom up. The
experiment is the basis of all which we try to describe with science. But an experiment is an active
intervention into the course of nature on the part of the experimenter; it is not contemplation
of nature from afar [44]. We set up this or that experiment to see how nature reacts. It is the
conjunction of myriads of such interventions and their consequences that we record into our data
books.18

We tell ourselves that we have learned something new when we can distill from the data a
compact description of all that was seen and—even more tellingly—when we can dream up further
experiments to corroborate that description. This is the minimal requirement of science. If, how-
ever, from such a description we can further distill a model of a free-standing “reality” independent
of our interventions, then so much the better. I have no bone to pick with reality. It is the most
solid thing we can hope for from a theory. Classical physics is the ultimate example in that regard.
It gives us a compact description, but it can give much more if we want it to.

The important thing to realize, however, is that there is no logical necessity that such a world-
view always be obtainable. If the world is such that we can never identify a reality—a free-standing
reality—independent of our experimental interventions, then we must be prepared for that too.
That is where quantum theory in its most minimal and conceptually simplest dispensation seems
to stand [46]. It is a theory whose terms refer predominately to our interface with the world. It
is a theory that cannot go the extra step that classical physics did without “writing songs I can’t

18But I must stress that I am not so positivistic as to think that physics should somehow be grounded on a primitive
notion of “sense impression” as the philosophers of the Vienna Circle did. The interventions and their consequences
that an experimenter records, have no option but to be thoroughly theory-laden. It is just that, in a sense, they
are by necessity at least one theory behind. No one got closer to the salient point than Heisenberg (in a quote he
attributed to Einstein many years after the fact) [45]:

It is quite wrong to try founding a theory on observable magnitudes alone. In reality the very opposite
happens. It is the theory which decides what we can observe. You must appreciate that observation
is a very complicated process. The phenomenon under observation produces certain events in our
measuring apparatus. As a result, further processes take place in the apparatus, which eventually and
by complicated paths produce sense impressions and help us to fix the effects in our consciousness.
Along this whole path—from the phenomenon to its fixation in our consciousness—we must be able to
tell how nature functions, must know the natural laws at least in practical terms, before we can claim
to have observed anything at all. Only theory, that is, knowledge of natural laws, enables us to deduce
the underlying phenomena from our sense impressions. When we claim that we can observe something
new, we ought really to be saying that, although we are about to formulate new natural laws that do
not agree with the old ones, we nevertheless assume that the existing laws—covering the whole path
from the phenomenon to our consciousness—function in such a way that we can rely upon them and
hence speak of “observation.”
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believe, with words that tear and strain to rhyme” [47]. It is a theory not about observables, not
about beables, but about “dingables.”19 We tap a bell with our gentle touch and listen for its
beautiful ring.

So what are the ways we can intervene on the world? What are the ways we can push it
and wait for its unpredictable reaction? The usual textbook story is that those things that are
measurable correspond to Hermitian operators. Or perhaps to say it in more modern language,
to each observable there corresponds a set of orthogonal projection operators {Πi} over a complex
Hilbert space HD that form a complete resolution of the identity,

∑

i

Πi = I . (2)

The index i labels the potential outcomes of the measurement (or intervention, to slip back into
the language promoted above). When an observer possesses the information ρ—captured most
generally by a mixed-state density operator—quantum mechanics dictates that he can expect the
various outcomes with a probability

P (i) = tr(ρΠi) . (3)

The best justification for this probability rule comes by way of Andrew Gleason’s amazing 1957
theorem [30]. For, it states that the standard rule is the only rule that satisfies a very simple kind
of noncontextuality for measurement outcomes [48]. In particular, if one contemplates measuring
two distinct observables {Πi} and {Γi} which happen to share a single projector Πk, then the
probability of outcome k is independent of which observable it is associated with. More formally,
the statement is this. Let PD be the set of projectors associated with a (real or complex) Hilbert
space HD for D ≥ 3, and let f : PD −→ [0, 1] be such that

∑

i

f(Πi) = 1 (4)

whenever a set of projectors {Πi} forms an observable. The theorem concludes that there exists a
density operator ρ such that

f(Π) = tr(ρΠ) . (5)

In fact, in a single blow, Gleason’s theorem derives not only the probability rule, but also the
state-space structure for quantum mechanical states (i.e., that it corresponds to the convex set of
density operators).

In itself this is no small feat, but the thing that makes the theorem an “amazing” theorem is
the sheer difficulty required to prove it [49]. Note that no restrictions have been placed upon the
function f beyond the ones mentioned above. There is no assumption that it need be differentiable,
nor that it even need be continuous. All of that, and linearity too, comes from the structure of the
observables—i.e., that they are complete sets of orthogonal projectors onto a linear vector space.

Nonetheless, one should ask: Does this theorem really give the physicist a clearer vision of
where the probability rule comes from? Astounding feats of mathematics are one thing; insight
into physics is another. The two are often at opposite ends of the spectrum. As fortunes turn, a
unifying strand can be drawn by viewing quantum foundations in the light of quantum information.

The place to start is to drop the fixation that the basic set of observables in quantum mechanics
are complete sets of orthogonal projectors. In quantum information theory it has been found to
be extremely convenient to expand the notion of measurement to also include general positive
operator-valued measures (POVMs) [39, 50]. In other words, in place of the usual textbook notion

19Pronounced ding-ables.
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of measurement, any set {Ed} of positive-semidefinite operators on HD that forms a resolution of
the identity, i.e., that satisfies

〈ψ|Ed|ψ〉 ≥ 0 , for all |ψ〉 ∈ HD (6)

and ∑

d

Ed = I , (7)

counts as a measurement. The outcomes of the measurement are identified with the indices d, and
the probabilities of the outcomes are computed according to a generalized Born rule,

P (d) = tr(ρEd) . (8)

The set {Ed} is called a POVM, and the operators Ed are called POVM elements. (In the non-
standard language promoted earlier, the set {Ed} signifies an intervention into nature, while the
individual Ed represent the potential consequences of that intervention.) Unlike standard measure-
ments, there is no limitation on the number of values the index d can take. Moreover, the Ed may
be of any rank, and there is no requirement that they be mutually orthogonal.

The way this expansion of the notion of measurement is usually justified is that any POVM
can be represented formally as a standard measurement on an ancillary system that has interacted
in the past with the system of actual interest. Indeed, suppose the system and ancilla are initially
described by the density operators ρS and ρA respectively. The conjunction of the two systems is
then described by the initial quantum state

ρSA = ρS ⊗ ρA . (9)

An interaction between the systems via some unitary time evolution leads to a new state

ρSA −→ UρSAU † . (10)

Now, imagine a standard measurement on the ancilla. It is described on the total Hilbert space via
a set of orthogonal projection operators {I ⊗ Πd}. An outcome d will be found, by the standard
Born rule, with probability

P (d) = tr
(
U(ρS ⊗ ρA)U †(I ⊗Πd)

)
. (11)

The number of outcomes in this seemingly indirect notion of measurement is limited only by the
dimensionality of the ancilla’s Hilbert space—in principle, there can be arbitrarily many.

As advertised, it turns out that the probability formula above can be expressed in terms of
operators on the system’s Hilbert space alone: This is the origin of the POVM. If we let |sα〉 and
|ac〉 be an orthonormal basis for the system and ancilla respectively, then |sα〉|ac〉 will be a basis
for the composite system. Using the cyclic property of the trace in Eq. (11), we get

P (d) =
∑
αc

〈sα|〈ac|
(
(ρs ⊗ ρA)U †(I ⊗Πd)U

)
|sα〉|ac〉

=
∑
α

〈sα| ρS

(∑
c

〈ac|
(
(I ⊗ ρA)U †(I ⊗Πd)U

)
|ac〉

)
|sα〉 . (12)

Letting trA and trS denote partial traces over the system and ancilla, respectively, it follows that

P (d) = trS(ρSEd) , (13)
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where
Ed = trA

(
(I ⊗ ρA)U †(I ⊗Πd)U

)
(14)

is an operator acting on the Hilbert space of the original system. This proves half of what is needed,
but it is also straightforward to go in the reverse direction—i.e., to show that for any POVM {Ed},
one can pick an ancilla and find operators ρA, U , and Πd such that Eq. (14) is true.

Putting this all together, there is a sense in which standard measurements capture everything
that can be said about quantum measurement theory [50]. As became clear above, a way to think
about this is that by learning something about the ancillary system through a standard measure-
ment, one in turn learns something about the system of real interest. Indirect though it may seem,
this can be a powerful technique, sometimes revealing information that could not have been re-
vealed otherwise [51]. A very simple example is where a sender has only a single qubit available for
the sending one of three potential messages. She therefore has a need to encode the message in one
of three preparations of the system, even though the system is a two-state system. To recover as
much information as possible, the receiver might (just intuitively) like to perform a measurement
with three distinct outcomes. If, however, he were limited to a standard quantum measurement,
he would only be able to obtain two outcomes. This—perhaps surprisingly—generally degrades his
opportunities for recovery.

What I would like to bring up is whether this standard way of justifying the POVM is the
most productive point of view one can take. Might any of the mysteries of quantum mechanics
be alleviated by taking the POVM as a basic notion of measurement? Does the POVM’s utility
portend a larger role for it in the foundations of quantum mechanics?

Standard Generalized
Measurements Measurements

{Πi} {Ed}

〈ψ|Πi|ψ〉 ≥ 0 , ∀|ψ〉 〈ψ|Ed|ψ〉 ≥ 0 , ∀|ψ〉
∑

i Πi = I
∑

d Ed = I

P (i) = tr(ρΠi) P (d) = tr(ρEd)

ΠiΠj = δij Πi ———

I try to make this point dramatic in my lectures by exhibiting a transparency of the table
above. On the left-hand side there is a list of various properties for the standard notion of a
quantum measurement. On the right-hand side, there is an almost identical list of properties for
the POVMs. The only difference between the two columns is that the right-hand one is missing
the orthonormality condition required of a standard measurement. The question I ask the audience
is this: Does the addition of that one extra assumption really make the process of measurement
any less mysterious? Indeed, I imagine myself teaching quantum mechanics for the first time and
taking a vote with the best audience of all, the students. “Which set of postulates for quantum
measurement would you prefer?” I am quite sure they would respond with a blank stare. But that
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is the point! It would make no difference to them, and it should make no difference to us. The
only issue worth debating is which notion of measurement will allow us to see more deeply into
quantum mechanics.

Therefore let us pose the question that Gleason did, but with POVMs. In other words, let us
suppose that the sum total of ways an experimenter can intervene on a quantum system corresponds
to the full set of POVMs on its Hilbert spaceHD. It is the task of the theory to give him probabilities
for the various consequences of his interventions. Concerning those probabilities, let us (in analogy
to Gleason) assume only that whatever the probability for a given consequence Ec is, it does not
depend upon whether Ec is associated with the POVM {Ed} or, instead, any other one {Ẽd}. This
means we can assume there exists a function

f : ED −→ [0, 1] , (15)

where
ED =

{
E : 0 ≤ 〈ψ|E|ψ〉 ≤ 1 , ∀ |ψ〉 ∈ HD

}
, (16)

such that whenever {Ed} forms a POVM,
∑

d

f(Ed) = 1 . (17)

(In general, we will call any function satisfying

f(E) ≥ 0 and
∑

d

f(Ed) = constant (18)

a frame function, in analogy to Gleason’s nonnegative frame functions. The set ED is often called
the set of effects over HD.)

It will come as no surprise, of course, that a Gleason-like theorem must hold for the function
in Eq. (15). Namely, it can be shown that there must exist a density operator ρ for which

f(E) = tr(ρE) . (19)

This was recently shown by Paul Busch [28] and, independently, by Joseph Renes and collabora-
tors [29]. What is surprising however is the utter simplicity of the proof. Let us exhibit the whole
thing right here and now.

First, consider the case where HD and the operators on it are defined only over the field
of (complex) rational numbers. It is no problem to see that f is “linear” with respect to
positive combinations of operators that never go outside ED. For consider a three-element
POVM {E1, E2, E3}. By assumption f(E1) + f(E2) + f(E3) = 1. However, we can also group
the first two elements in this POVM to obtain a new POVM, and must therefore have f(E1 +
E2)+f(E3) = 1. In other words, the function f must be additive with respect to a fine-graining
operation:

f(E1 + E2) = f(E1) + f(E2) . (20)

Similarly for any two integers m and n,

f(E) = mf

(
1
m

E

)
= n f

(
1
n

E

)
(21)

Suppose n
m ≤ 1. Then if we write E = nG, this statement becomes:

f
( n

m
G

)
=

n

m
f(G) . (22)
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Thus we immediately have a kind of limited linearity on ED.
One might imagine using this property to cap off the theorem in the following way. Clearly

the full D2-dimensional vector space OD of Hermitian operators on HD is spanned by the set
ED since that set contains, among other things, all the projection operators. Thus, we can write
any operator E ∈ ED as a linear combination

E =
D

2∑

i=1

αiEi (23)

for some fixed operator-basis {Ei}D
2

i=1. “Linearity” of f would then give

f(E) =
D

2∑

i=1

αif(Ei) . (24)

So, if we define ρ by solving the D2 linear equations

tr(ρEi) = f(Ei) , (25)

we would have

f(E) =
∑

i

αitr
(
ρEi

)
= tr

(
ρ

∑

i

αiEi

)
= tr(ρE) (26)

and essentially be done. (Positivity and normalization of f would require ρ to be an actual
density operator.) But the problem is that in expansion (23) there is no guarantee that the
coefficients αi can be chosen so that αiEi ∈ ED.

What remains to be shown is that f can be extended uniquely to a function that is truly
linear on OD. This too is rather simple. First, take any positive semi-definite operator E. We
can always find a positive rational number g such that E = gG and G ∈ ED. Therefore, we can
simply define f(E) ≡ gf(G). To see that this definition is unique, suppose there are two such
operators G1 and G2 (with corresponding numbers g1 and g2) such that E = g1G1 = g2G2.
Further suppose g2 ≥ g1. Then G2 = g1

g2
G1 and, by the homogeneity of the original unextended

definition of f , we obtain g2f(G2) = g1f(G1). Furthermore this extension retains the additivity
of the original function. For suppose that neither E nor G, though positive semi-definite, are
necessarily in ED. We can find a positive rational number c ≥ 1 such that 1

c (E + G), 1
cE, and

1
cG are all in ED. Then, by the rules we have already obtained,

f(E + G) = c f

(
1
c
(E + G)

)
= c f

(
1
c
E

)
+ c f

(
1
c
G

)
= f(E) + f(G). (27)

Let us now further extend f ’s domain to the full space OD. This can be done by noting
that any operator H can be written as the difference H = E − G of two positive semi-definite
operators. Therefore define f(H) ≡ f(E) − f(G), from which it also follows that f(−G) =
−f(G). To see that this definition is unique suppose there are four operators E1, E2, G1, and
G2, such that H = E1 − G1 = E2 − G2. It follows that E1 + G2 = E2 + G1. Applying f (as
extended in the previous paragraph) to this equation, we obtain f(E1)+f(G2) = f(E2)+f(G1)
so that f(E1)− f(G1) = f(E2)− f(G2). Finally, with this new extension, full linearity can be
checked immediately. This completes the proof as far as the (complex) rational number field is
concerned: Because f extends uniquely to a linear functional on OD, we can indeed go through
the steps of Eqs. (23) through (26) without worry.

There are two things that are significant about this much of the proof. First, in contrast to
Gleason’s original theorem, there is nothing to bar the same logic from working when D = 2.
This is quite nice because much of the community has gotten into the habit of thinking that
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there is nothing particularly “quantum mechanical” about a single qubit. [52] Indeed, because
orthogonal projectors on H2 can be mapped onto antipodes of the Bloch sphere, it is known that
the measurement-outcome statistics for any standard measurement can be mocked-up through a
noncontextual hidden-variable theory. What this result shows is that that simply is not the case
when one considers the full set of POVMs as one’s potential measurements. 20

The other important thing is that the theorem works for Hilbert spaces over the rational number
field: one does not need to invoke the full power of the continuum. This contrasts with the surprising
result of Meyer [54] that the standard Gleason theorem fails in such a setting. The present theorem
hints at a kind of resiliency to the structure of quantum mechanics that falls through the mesh of
the standard Gleason result: The probability rule for POVMs does not actually depend so much
upon the detailed workings of the number field.

The final step of the proof, indeed, is to show that nothing goes awry when we go the extra
step of reinstating the continuum.

In other words, we need to show that the function f (now defined on the set ED of
complex operators) is a continuous function. This comes about in a simple way from
f ’s additivity. Suppose for two positive semi-definite operators E and G that E ≤ G
(i.e., G−E is positive semi-definite). Then trivially there exists a positive semi-definite
operator H such that E + H = G and through which the additivity of f gives f(E) ≤
f(G). Let c be an irrational number, and let an be an increasing sequence and bn a
decreasing sequence of rational numbers that both converge to c. It follows for any
positive semi-definite operator E, that

f(anE) ≤ f(cE) ≤ f(bnE) , (28)

which implies
anf(E) ≤ f(cE) ≤ bnf(E) . (29)

Since lim anf(E) and lim bnf(E) are identical, by the “pinching theorem” of elementary
calculus, they must equal f(cE). This establishes that we can consistently define

f(cE) = cf(E) . (30)

Reworking the extensions of f in the last inset (but with this enlarged notion of homo-
geneity), one completes the proof in a straightforward manner.

Of course we are not getting something from nothing. The reason the present derivation is so
easy in contrast to the standard proof is that mathematically the assumption of POVMs as the basic
notion of measurement is significantly stronger than the usual assumption. Physically, though, I
would say it is just the opposite. Why add extra restrictions to the notion of measurement when
they only make the route from basic assumption to practical usage more circuitous than need be?

Still, no assumption should be left unanalyzed if it stands a chance of bearing fruit. Indeed, one
can ask what is so very compelling about the noncontextuality property (of probability assignments)
that both Gleason’s original theorem and the present version make use of. Given the picture of
measurement as a kind of invasive intervention into the world, one might expect the very opposite.
One is left wondering why measurement probabilities do not depend upon the whole context of the
measurement interaction. Why is P (d) not of the form f(d, {Ec})? Is there any good reason for
this kind of assumption?

20In fact, one need not consider the full set of POVMs in order to derive a noncolorability result along the lines of
Kochen and Specker for a single qubit. Considering only 3-outcome POVMs of the so-called “trine” or “Mercedes-
Benz” type already does the trick. [53]
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4.1 Noncontextuality

In point of fact, there is: For, one can argue that the noncontextuality of probability assignments
for measurement outcomes is more basic than even the particular structure of measurements (i.e.,
that they be POVMs). Noncontextuality bears more on how we identify what we are measuring
than anything to do with a measurement’s invasiveness upon nature.

Here is a way to see that. [55] Forget about quantum mechanics for the moment and consider a
more general world—one that, skipping the details of quantum mechanics, still retains the notions
of systems, machines, actions, and consequences, and, most essentially, retains the notion of a
scientific agent performing those actions and taking note of those consequences.

Take a system S and imagine acting on it with one of two machines, M and N—things that we
might colloquially call “measurement devices” if we had the aid of a theory like quantum mechanics.
For the case of machine M , let us label the possible consequences of that action {m1,m2, . . .}. (Or if
you want to think of them in the mold of quantum mechanics, call them “measurement outcomes.”)
For the case of machine N , let us label them {n1, n2, . . .}.

If one takes a Bayesian point of view about probability, then nothing can stop the agents in this
world from using all the information available to them to ascribe probabilities to the consequences
of those two potential actions. Thus, for an agent who cares to take note, there are two probability
distributions, pM (mk) and pN (nk), lying around. These probability distributions stand for his
subjective judgments about what will obtain if he acts with either of the two machines.

This is well and good, but it is hardly a physical theory. We need more. Let us suppose the
labels mk and nk are, at the very least, to be identified with elements in some master set F—
that is, that there is some kind of connective glue for comparing the operation of one machine to
another. This set may even be a set with further structure, like a vector space or something, but
that is beside the point. What is of first concern is under what conditions will an agent identify two
particular labels mi and nj with the same element F in the master set—disparate in appearance,
construction, and history though the two machines M and N may be. Perhaps one machine was
manufactured by Lucent Technologies while the other was manufactured by IBM Corporation.

There is really only one tool available for the purpose, namely the probability assignments
pM (mi) and pN (nj). If

pM (mi) 6= pN (nj) , (31)

then surely he would not imagine identifying mi and nj with the same element F ∈ F . If, on the
other hand, he finds

pM (mi) = pN (nj) (32)

regardless of his initial beliefs about S, then we might think there is some warrant for it.
That is the whole story of noncontextuality. It is nothing more than: The consequences (mi

and nj) of our disparate actions (M and N) should be labeled the same when we would bet the
same on them in all possible circumstances (i.e., regardless of our initial knowledge of S). To put
this maybe a bit more baldly, the label by which we identify a measurement outcome is a subjective
judgment just like a probability, and just like a quantum state.

By this point of view, noncontextuality is a tautology—it is built in from the start. Asking
why we have it is a waste of time. Where we do have a freedom is in asking why we make one
particular choice of a master set over another. Asking that may tell us something about physics.
Why should the mi’s be drawn from a set of effects ED? Not all choices of the master set are
equally interesting once we have settled on noncontextuality for the probability assignments.21 But
quantum mechanics, of course, is particularly interesting!

21See Ref. [56], pp. 86–88, and Ref. [57] for some examples in that regard.
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4.2 Le Bureau International des Poids et Mesures à Paris

There is still one further, particularly important, advantage to thinking of POVMs as the basic
notion of measurement in quantum mechanics. For with an appropriately chosen single POVM one
can stop thinking of the quantum state as a linear operator altogether, and instead start thinking
of it as a probabilistic judgment with respect to the (potential) outcomes of a standard quantum
measurement. That is, a measurement device right next to the standard kilogram and the standard
meter in a carefully guarded vault, deep within the bowels of the International Bureau of Weights
and Measures.22 Here is what I mean by this.

Our problem hinges on finding a measurement for which the probabilities of outcomes com-
pletely specify a unique density operator. Such measurements are called informationally complete
and have been studied for some time [60, 61, 62]. Here however, the picture is most pleasing if we
consider a slightly refined version of the notion—that of the minimal informationally complete mea-
surement [32]. The space of Hermitian operators on HD is itself a linear vector space of dimension
D2. The quantity tr(A†B) serves as an inner product on that space. Hence, if we can find a POVM
E = {Ed} consisting of D2 linearly independent operators, the probabilities P (d) = tr(ρEd)—now
thought of as projections in the directions of the vectors Ed—will completely specify the operator
ρ. Any two distinct density operators ρ and σ must give rise to distinct outcome statistics for this
measurement. The minimal number of outcomes a POVM can have and still be informationally
complete is D2.

Do minimal informationally complete POVMs exist? The answer is yes. Here is a simple way
to produce one, though there are many other ways. Start with a complete orthonormal basis |ej〉
on HD. It is easy to check that the following D2 rank-1 projectors Πd form a linearly independent
set.

1. For d = 1, . . . , D, let
Πd = |ej〉〈ej | , (33)

where j, too, runs over the values 1, . . . , D.

2. For d = D + 1, . . . , 1
2D(D + 1), let

Πd =
1
2
(|ej〉+ |ek〉)(〈ej |+ 〈ek|) , (34)

where j < k.

3. Finally, for d = 1
2D(D + 1) + 1, . . . , D2, let

Πd =
1
2
(|ej〉+ i|ek〉)(〈ej | − i〈ek|) , (35)

where again j < k.

All that remains is to transform these (positive-semidefinite) linearly independent operators Πd

into a proper POVM. This can be done by considering the positive semidefinite operator G defined
by

G =
D2∑

d=1

Πd . (36)

22This idea has its roots in L. Hardy’s two important papers Refs. [58] and [59].
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It is straightforward to show that 〈ψ|G|ψ〉 > 0 for all |ψ〉 6= 0, thus establishing that G is positive
definite (i.e., Hermitian with positive eigenvalues) and hence invertible. Applying the (invertible)
linear transformation X → G−1/2XG−1/2 to Eq. (36), we find a valid decomposition of the identity,

I =
D2∑

d=1

G−1/2ΠdG
−1/2 . (37)

The operators
Ed = G−1/2ΠdG

−1/2 (38)

satisfy the conditions of a POVM, Eqs. (6) and (7), and moreover, they retain the rank and linear
independence of the original Πd. Thus we have what we need.

With the existence of minimal informationally complete POVMs assured, we can think about
the vault in Paris. Let us suppose from here out that it contains a machine that enacts a minimal
informationally complete POVM Eh whenever it is used. We reserve the index h to denote the out-
comes of this standard quantum measurement, for they will replace the notion of the “hypothesis”
in classical statistical theory. Let us develop this from a Bayesian point of view.

Whenever one has a quantum system in mind, it is legitimate for him to use all he knows and
believes of it to ascribe a probability function P (h) to the (potential) outcomes of this standard
measurement. In fact, that is all a quantum state is from this point of view: It is a subjective
judgment about which consequence will obtain as a result of an interaction between one’s system
and that machine. Whenever one performs a measurement {Ed} on the system—one different from
the standard quantum measurement {Eh}—at the most basic level of understanding, all one is
doing is gathering (or evoking) a piece of data d that (among other things) allows one to update
from one’s initial subjective judgment P (h) to something else Pd(h).23

What is important to recognize is that, with this change of description, we may already be edging
toward a piece of quantum mechanics that is not of information theoretic origin. It is this. If one
accepts quantum mechanics and supposes that one has a system for which the standard quantum
measurement device has D2 outcomes (for some integer D), then one is no longer completely free to
make just any subjective judgment P (h) he pleases. There are constraints. Let us call the allowed
region of initial judgments PSQM.

For instance, take the POVM in Eq. (38) as the standard quantum measurement. (And thus,
now label its outcomes by h rather than d.) Then, one can show that P (h) is bounded away from
unity, regardless of one’s initial quantum state for the system. In particular,

P (h) ≤ max
ρ

tr(ρEh)

≤ max
Π

tr(ΠEh)

≤ λmax(Eh)
= λmax(G−1/2ΠhG−1/2) = λmax(ΠhG−1Πh)
≤ λmax(G−1) , (39)

where the second line above refers to a maximization over all one dimensional projectors and λmax(·)
denotes the largest eigenvalue of its argument. On the other hand, one can calculate the eigenvalues
of G−1 explicitly. [63] Through this, one obtains

P (h) ≤
[
D − 1

2

(
1 + cot

3π

4D

)]−1

< 1 . (40)

23We will come back to describing the precise form of this update and its similarity to Bayes’ rule in Section 6.
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Figure 1: The planar surface represents the space of all probability distributions over D2 outcomes.
Accepting quantum mechanics is, in part, accepting that one’s subjective beliefs for the outcomes
of a standard quantum measurement device will not fall outside a certain convex set. Each point
within the region represents a perfectly valid quantum state.

For large D, this bound asymptotes to roughly (0.79D)−1.
More generically, for any minimal informationally complete POVM {Eh}, P (h) must be bounded

away from unity for all its possible outcomes. Thus even at this stage, there is something driving
a wedge between quantum mechanics and simple Bayesian probability theory. When one accepts
quantum mechanics, one voluntarily accepts a restriction on one’s subjective judgments for the
consequences of a standard quantum measurement intervention: For all consequences h, there are
no conditions whatsoever convincing enough to compel one to a probability ascription P (h) = 1.
That is, one gives up on the hope of certainty. This, indeed, one might pinpoint as an assumption
about the physical world that goes beyond pure probability theory.24

But what is that assumption in physical terms? What is our best description of the wedge?
Some think they already know the answer, and it is quantum entanglement.

5 Wither Entanglement? 25

When two systems, of which we know the states by their re-
spective representatives, enter into temporary physical inter-
action due to known forces between them, and when after a
time of mutual influence the systems separate again, then they
can no longer be described in the same way as before, viz. by
endowing each of them with a representative of its own. I
would not call that one but rather the characteristic trait of
quantum mechanics, the one that enforces its entire departure
from classical lines of thought. By the interaction the two rep-
resentatives (or ψ-functions) have become entangled.

— Erwin Schrödinger, 1935

24It is at this point that the present account of quantum mechanics differs most crucially from Refs. [58] and [59].
Hardy sees quantum mechanics as a generalization and extension of classical probability theory, whereas quantum
mechanics is depicted here as a restriction to probability theory. It is a restriction that takes into account how we
ought to think and gamble in light of a certain physical fact—a fact we are working like crazy to identify.

25This is not a spelling mistake.
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Quantum entanglement has certainly captured the attention of our community. By most ac-
counts it is the main ingredient in quantum information theory and quantum computing [64], and
it is the main mystery of the quantum foundations [65]. But what is it? Where does it come from?

The predominant purpose it has served in this paper has been as a kind of background. For
it, more than any other ingredient in quantum mechanics, has clinched the issue of “information
about what?” in the author’s mind: That information cannot be about a preexisting reality (a
hidden variable) unless we are willing to renege on our reason for rejecting the quantum state’s
objective reality in the first place. What I am alluding to here is the conjunction of the Einstein
argument reported in Section 3 and the phenomena of the Bell inequality violations by quantum
mechanics. Putting those points together gave us that the information symbolized by a |ψ〉 must
be information about the potential consequences of our interventions into the world.

But, now I would like to turn the tables and ask whether the structure of our potential
interventions—the POVMs—can tell us something about the origin of entanglement. Could it
be that the concept of entanglement is just a minor addition to the much deeper point that mea-
surements have this structure?

The technical translation of this question is, why do we combine systems according to the
tensor-product rule? There are certainly innumerable ways to combine two Hilbert spaces HA and
HB to obtain a third HAB. We could take the direct sum of the two spaces HAB = HA ⊕HB. We
could take their Grassmann product HAB = HA ∧ HB [66]. We could take scads of other things.
But instead we take their tensor product,

HAB = HA ⊗HB . (41)

Why?
Could it arise from the selfsame considerations as of the previous section—namely, from a

noncontextuality property for measurement-outcome probabilities? The answer is yes, and the
theorem I am about demonstrate owes much in inspiration to Ref. [67]. 26

Here is the scenario. Suppose we have two quantum systems, and we can make a measurement
on each. On the first, we can measure any POVM on the DA-dimensional Hilbert space HA; on
the second, we can measure any POVM on the DB-dimensional Hilbert space HB. (This, one
might think, is the very essence of having two systems rather than one—i.e., that we can probe
them independently.) Moreover, suppose we may condition the second measurement on the nature
and the outcome of the first, and vice versa. That is to say—walking from A to B—we could first
measure {Ei} on A, and then, depending on the outcome i, measure {F i

j} on B. Similarly—walking
from B to A—we could first measure {Fj} on B, and then, depending on the outcome j, measure
{Ej

i } on A. So that we have valid POVMs, we must have
∑

i

Ei = I and
∑

j

F i
j = I ∀ i , (42)

and ∑

i

Ej
i = I ∀ j and

∑

j

Fj = I , (43)

for these sets of operators. Let us denote by Sij an ordered pair of operators, either of the form
(Ei, F

i
j ) or of the form (Ej

i , Fj), as appearing above. Let us call a set of such operators {Sij} a
locally-measurable POVM tree.

26After posting Ref. [1], Howard Barnum and Alex Wilce brought to my attention that there is a significant amount
of literature in the quantum logic community devoted to similar ways of motivating the tensor-product rule. See for
example Ref. [68] and the many citations therein.
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Suppose now that—just as with the POVM-version of Gleason’s theorem in Section 4—the joint
probability P (i, j) for the outcomes of such a measurement should not depend upon which tree Sij

is embedded in: This is essentially the same assumption we made there, but now applied to local
measurements on the separate systems. In other words, let us suppose there exists a function

f : EDA
× EDB

−→ [0, 1] (44)

such that ∑

ij

f(Sij) = 1 (45)

whenever the Sij satisfy either Eq. (42) or Eq. (43).
Note in particular that Eq. (44) makes no use of the tensor product: The domain of f is the

Cartesian product of the two sets EDA
and EDB

. The notion of a local measurement on the separate
systems is enforced by the requirement that the ordered pairs Sij satisfy the side conditions of
Eqs. (42) and (43). This, of course, is not the most general kind of local measurement one can
imagine—more sophisticated measurements could involve multiple ping-pongings between A and B
as in Ref. [69]—but the present restricted class is already sufficient for fixing that the probability
rule for local measurements must come from a tensor-product structure.

The theorem 27 is this: If f satisfies Eqs. (44) and (45) for all locally-measurable POVM trees,
then there exists a linear operator L on HA ⊗HB such that

f(E, F ) = tr
(
L(E ⊗ F )

)
. (46)

If HA and HB are defined over the field of complex numbers, then L is unique. Uniqueness does
not hold, however, if the underlying field is the real numbers.

The proof of this statement is almost a trivial extension of the proof in Section 4. One again
starts by showing additivity, but this time in the two variables E and F separately. For instance,
for a fixed E ∈ EDA

, define
gE(F ) = f(E, F ) , (47)

and consider two locally-measurable POVM trees

{(I −E, Fi), (E, Gα)} and {(I −E, Fi), (E, Hβ)} , (48)

where {Fi}, {Gα}, and {Hβ} are arbitrary POVMs on HB. Then Eq. (45) requires that
∑

i

gI-E(Fi) +
∑
α

gE(Gα) = 1 (49)

and ∑

i

gI-E(Fi) +
∑

β

gE(Hβ) = 1 . (50)

From this it follows that, ∑
α

gE(Gα) =
∑

β

gE(Hβ) = const. (51)

That is to say, gE(F ) is a frame function in the sense of Section 4. Consequently, we know that we
can use the same methods as there to uniquely extend gE(F ) to a linear functional on the complete
set of Hermitian operators on HB. Similarly, for fixed F ∈ EDB

, we can define

hF (E) = f(E,F ) , (52)
27In Ref. [1], a significantly stronger claim is made: Namely, that L is in fact a density operator. This was a flat-out

mistake. See further discussion below.
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and prove that this function too can be extended uniquely to a linear functional on the Hermitian
operators on HA.

The linear extensions of gE(F ) and hF (E) can be put together in a simple way to give a full
bilinear extension to the function f(E, F ). Namely, for any two Hermitian operators A and B on
HA and HB, respectively, let A = α1E1−α2E2 and B = β1F1− β2F2 be decompositions such that
α1, α2, β1, β2 ≥ 0, E1, E2 ∈ EDA

, and F1, F2 ∈ EDB
. Then define

f(A,B) ≡ α1gE1(B)− α2gE2(B) . (53)

To see that this definition is unique, take any other decomposition

A = α̃1Ẽ1 − α̃2Ẽ2 . (54)

Then we have

f(A, B) = α̃1gẼ1
(B)− α̃2gẼ2

(B)

= α̃1f(Ẽ1, B)− α̃2f(Ẽ2, B)

= β1

(
α̃1f(Ẽ1, F1)− α̃2f(Ẽ2, F1)

)
− β2

(
α̃1f(Ẽ1, F2)− α̃2f(Ẽ2, F2)

)

= β1hF1(A)− β2hF2(A)

= β1

(
α1f(E1, F1)− α2f(E2, F1)

)
− β2

(
α1f(E1, F2)− α2f(E2, F2)

)

= α1f(E1, B)− α2f(E2, B)
= α1gE1(B)− α2gE2(B) , (55)

which is as desired.
With bilinearity for the function f established, we have essentially the full story [66, 70]. For,

let {Ei}, i = 1, . . . , D2
A, be a complete basis for the Hermitian operators on HA and let {Fj},

j = 1, . . . , D2
B, be a complete basis for the Hermitian operators on HB. If E =

∑
i αiEi and

F =
∑

j βjFj , then
f(E,F ) =

∑

ij

αiβjf(Ei, Fj) . (56)

Define L to be a linear operator on HA ⊗HB satisfying the (DADB)2 linear equations

tr
(
L(Ei ⊗ Fj)

)
= f(Ei, Fj) . (57)

Such an operator always exists. Consequently we have,

f(E,F ) =
∑

ij

αiβjtr
(
L(Ei ⊗ Fj)

)

= tr
(
L(E ⊗ F )

)
. (58)

For complex Hilbert spaces HA and HB, the uniqueness of L follows because the set {Ei ⊗ Fj}
forms a complete basis for the Hermitian operators on HA ⊗ HB. [71] For real Hilbert spaces,
however, the analog of the Hermitian operators are the symmetric operators. The dimensionality
of the space of symmetric operators on a real Hilbert space HD is 1

2D(D + 1), rather than the D2

it is for the complex case. This means that in the steps above only

1
4
DADB(DA + 1)(DB + 1) (59)
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equations will appear in Eq. (57), whereas

1
2
DADB(DADB + 1) (60)

are needed to uniquely specify an L. For instance take DA = DB = 2. Then Eq. (59) gives nine
equations, while Eq. (60) requires ten.

This establishes the theorem. It would be nice if we could go further and establish the full
probability rule for local quantum measurements—i.e., that L must be a density operator. Unfor-
tunately, our assumptions are not strong enough for that. Here is a counterexample. [72] Consider
a linear operator that is proportional to the swap operator on the two Hilbert spaces:

LS(E ⊗ F ) =
1

D 2
F ⊗ E . (61)

This clearly satisfies the conditions of our theorem, but it is not equivalent to a density operator.
Of course, one could recover positivity for L by requiring that it give positive probabilities even

for nonlocal measurements (i.e., resolutions of the identity operator on HA ⊗ HB). But in the
purely local setting contemplated here, that would be a cheap way out. For, one should ask in good
conscience what ought to be the rule for defining the full class of measurements (including nonlocal
measurements): Why should it correspond to an arbitrary resolution of the identity on the tensor
product? There is nothing that makes it obviously so, unless one has already accepted standard
quantum mechanics.

Alternatively, it must be possible to give a purely local condition that will restrict L to be
a density operator. This is because L, as noted above, is uniquely determined by the function
f(E,F ); we never need to look further than the probabilities of local measurements outcomes in
specifying L. Ferreting out such a condition supplies an avenue for future research.

All of this does not, however, take away from the fact that whatever L is, it must be a linear
operator on the tensor product of HA and HB. Therefore, let us close by emphasizing the striking
feature of this way of deriving the tensor-product rule for combining separate quantum systems: It
is built on the very concept of local measurement. There is nothing “spooky” or “nonlocal” about
it; there is nothing in it resembling “passion at a distance” [73]. Indeed, one did not even have
to consider probability assignments for the outcomes of measurements of the “nonlocality without
entanglement” variety [69] to uniquely fix the probability rule. That is—to give an example on
H3 ⊗H3—one need not consider standard measurements like {Ed = |ψd〉〈ψd|}, d = 1, . . . , 9, where

|ψ1〉 = |1〉|1〉
|ψ2〉 = |0〉|0 + 1〉 |ψ6〉 = |1 + 2〉|0〉
|ψ3〉 = |0〉|0− 1〉 |ψ7〉 = |1− 2〉|0〉 (62)
|ψ4〉 = |2〉|1 + 2〉 |ψ8〉 = |0 + 1〉|2〉
|ψ5〉 = |2〉|1− 2〉 |ψ9〉 = |0− 1〉|2〉

with |0〉, |1〉, and |2〉 forming an orthonormal basis on H3, and |0 + 1〉 = 1√
2
(|0〉 + |1〉), etc. This

is a measurement that takes neither the form of Eq. (42) nor (43). It stands out instead, in that
even though all its POVM elements are tensor-product operators—i.e., they have no quantum
entanglement—it still cannot be measured by local means, even with the elaborate ping-ponging
strategies mentioned earlier.

Thus, the tensor-product rule, and with it quantum entanglement, seems to be more a statement
of locality than anything else. It, like the probability rule, is more a product of the structure of the
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observables—that they are POVMs—combined with noncontextuality. In searching for the secret
ingredient to drive a wedge between general Bayesian probability theory and quantum mechanics,
it seems that the direction not to look is toward quantum entanglement. Perhaps the trick instead
is to dig deeper into the Bayesian toolbox.

6 Whither Bayes’ Rule? 28

And so you see I have come to doubt
All that I once held as true
I stand alone without beliefs
The only truth I know is you.

— Paul Simon, timeless

Quantum states are states of information, knowledge, belief, pragmatic gambling commitments,
not states of nature. That statement is the cornerstone of this paper. Thus, in searching to make
sense of the remainder of quantum mechanics, one strategy ought to be to seek guidance [74] from
the most developed avenue of “rational-decision theory” to date—Bayesian probability theory [75,
76, 77]. Indeed, the very aim of Bayesian theory is to develop reliable methods of reasoning
and making decisions in the light of incomplete information. To what extent does that structure
mesh with the seemingly independent structure of quantum mechanics? To what extent are there
analogies; to what extent distinctions?

This section is about turning a distinction into an analogy. The core of the matter is the manner
in which states of belief are updated in the two theories. At first sight, they appear to be quite
different in character. To see this, let us first explore how quantum mechanical states change when
information is gathered.

In older accounts of quantum mechanics, one often encounters the “collapse postulate” as a
basic statement of the theory. One hears things like, “Axiom 5: Upon the completion of an ideal
measurement of an Hermitian operator H, the system is left in an eigenstate of H.” In quantum
information, however, it has become clear that it is useful to broaden the notion of measurement,
and with it, the analysis of how a state can change in the process. The foremost reason for this
is that the collapse postulate is simply not true in general: Depending upon the exact nature of
the measurement interaction, there may be any of a large set of possibilities for the final state of a
system.

The broadest consistent notion of state change arises in the theory of “effects and opera-
tions” [50]. The statement is this. Suppose one’s initial state for a quantum system is a density
operator ρ, and a POVM {Ed} is measured on that system. Then, according to this formalism, the
state after the measurement can be any state ρd of the form

ρd =
1

tr(ρEd)

∑

i

AdiρA†di , (63)

where ∑

i

A†diAdi = Ed . (64)

Note the immense generality of this formula. There is no constraint on the number of indices i in
the Adi and these operators need not even be Hermitian.

28This is not a spelling mistake.
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The usual justification for this kind of generality—just as in the case of the commonplace
justification for the POVM formalism—comes about by imagining that the measurement arises in
an indirect fashion rather than as a direct and immediate observation. In other words, the primary
system is pictured to interact with an ancilla first, and only then subjected to a “real” measurement
on the ancilla alone. The trick is that one posits a kind of projection postulate on the primary
system due to this process. This assumption has a much safer feel than the raw projection postulate
since, after the interaction, no measurement on the ancilla should cause a physical perturbation to
the primary system.

More formally, we can start out by following Eqs. (9) and (10), but in place of Eq. (11) we
must make an assumption on how the system’s state changes. For this one invokes a kind of
“projection-postulate-at-a-distance.”29 Namely, one takes

ρd =
1

P (d)
trA

(
(I ⊗Πd)U(ρS ⊗ ρA)U †(I ⊗Πd)

)
. (65)

The reason for invoking the partial trace is to make sure that any hint of a state change for the
ancilla remains unaddressed.

To see how expression (65) makes connection to Eq. (63), denote the eigenvalues and eigenvectors
of ρA by λα and |aα〉 respectively. Then ρS ⊗ ρA can be written as

ρS ⊗ ρA =
∑
α

√
λα |aα〉ρS〈aα|

√
λα , (66)

and, expanding Eq. (65), we have

ρd =
1

P (d)

∑

β

〈aβ|(I ⊗Πd)U †(ρS ⊗ ρA)U(I ⊗Πd)|aβ〉

=
1

P (d)

∑

αβ

(√
λα 〈aβ|(I ⊗Πd)U †|aα〉

)
ρS

(
〈aα|U(I ⊗Πd)|aβ〉

√
λα

)
.

(67)

A representation of the form in Eq. (63) can be made by taking

Abαβ =
√

λα 〈aα|U(I ⊗Πd)|aβ〉 (68)

and lumping the two indices α and β into the single index i. Indeed, one can easily check that
Eq. (64) holds.30 This completes what we had set out to show. However, just as with the case of
the POVM {Ed}, one can always find a way to reverse engineer the derivation: Given a set of Adi,
one can always find a U , a ρA, and set of Πd such that Eq. (65) becomes true.

Of course the old collapse postulate is contained within the extended formalism as a special
case: There, one just takes both sets {Ed} and {Adi = Ed} to be sets of orthogonal projection
operators. Let us take a moment to think about this special case in isolation. What is distinctive
about it is that it captures in the extreme a common folklore associated with the measurement
process. For it tends to convey the image that measurement is a kind of gut-wrenching violence:
In one moment the state is ρ = |ψ〉〈ψ|, while in the very next it is a Πi = |i〉〈i|. Moreover, such a
wild transition need depend upon no details of |ψ〉 and |i〉; in particular the two states may even

29David Mermin has also recently emphasized this point in Ref. [78].
30As an aside, it should be clear from the construction in Eq. (68) that there are many equally good representations

of ρd. For a precise statement of the latitude of this freedom, see Ref. [79].
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be almost orthogonal to each other. In density-operator language, there is no sense in which Πi is
contained in ρ: the two states are in distinct places of the operator space. That is,

ρ 6=
∑

i

P (i)Πi . (69)

Contrast this with the description of information gathering that arises in Bayesian probability
theory. There, an initial state of belief is captured by a probability distribution P (h) for some
hypothesis H. The way gathering a piece of data d is taken into account in assigning one’s new
state of belief is through Bayes’ conditionalization rule. That is to say, one expands P (h) in terms
of the relevant joint probability distribution and picks off the appropriate term:

P (h) =
∑

d

P (h, d)

=
∑

d

P (d)P (h|d) (70)

↓

P (h) d−→ P (h|d) , (71)

where P (h|d) satisfies the tautology

P (h|d) =
P (h, d)
P (d)

. (72)

How gentle this looks in comparison to quantum collapse! When one gathers new information,
one simply refines one’s old beliefs in the most literal of senses. It is not as if the new state is
incommensurable with the old. It was always there; it was just initially averaged in with various
other potential beliefs.

Why does quantum collapse not look more like Bayes’ rule? Is quantum collapse really a more
violent kind of change, or might it be an artifact of a problematic representation? By this stage, it
should come as no surprise to the reader that dropping the ancilla from our image of generalized
measurements will be the first step to progress. Taking the transition from ρ to ρd in Eqs. (63) and
(64) as the basic statement of what quantum measurement is is a good starting point.

To accentuate a similarity between Eq. (63) and Bayes’ rule, let us first contemplate cases of it
where the index i takes on a single value. Then, we can conveniently drop that index and write

ρd =
1

P (d)
AdρA†d , (73)

where
Ed = A†dAd . (74)

In a loose way, one can say that measurements of this sort are the most efficient they can be for a
given POVM {Ed}: For, a measurement interaction with an explicit i-dependence may be viewed
as “more truly” a measurement of a finer-grained POVM that just happens to throw away some of
the information it gained. Let us make this point more precise.

Notice that Bayes’ rule has the property that one’s uncertainty about a hypothesis can be
expected to decrease upon the acquisition of data. This can be made rigorous, for instance, by
gauging uncertainty with the Shannon entropy function [80],

S(H) = −
∑

h

P (h) log P (h) . (75)
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This number is bounded between 0 and the logarithm of the number of hypotheses in H, and there
are several reasons to think of it as a good measure of uncertainty. Perhaps the most important of
these is that it quantifies the number of binary-valued questions one expects to ask (per instance
of H) if one’s only means to ascertain the outcome is from a colleague who knows the result [81].
Under this quantification, the lower the Shannon entropy, the more predictable a measurement’s
outcomes.

Because the function f(x) = −x log x is concave on the interval [0, 1], it follows that,

S(H) = −
∑

h

(∑

d

P (d)P (h|d)

)
log

(∑

d

P (d)P (h|d)

)

≥ −
∑

d

P (d)
∑

h

P (h|d) log P (h|d) .

=
∑

d

P (d)S(H|d) (76)

Indeed we hope to find a similar statement for how the result of efficient quantum measure-
ments decrease uncertainty or impredictability. But, what can be meant by a decrease of uncertainty
through quantum measurement? I have argued strenuously that the information gain in a measure-
ment cannot be information about a preexisting reality. The way out of the impasse is simple: The
uncertainty that decreases in quantum measurement is the uncertainty one expects for the results
of other potential measurements.

There are at least two ways of quantifying this that are worthy of note. The first has to do with
the von Neumann entropy of a density operator ρ:

S(ρ) = −tr ρ log ρ = −
D∑

k=1

λk log λk , (77)

where the λk signify the eigenvalues of ρ. (We use the convention that λ log λ = 0 whenever λ = 0
so that S(ρ) is always well defined.)

The intuitive meaning of the von Neumann entropy can be found by first thinking about the
Shannon entropy. Consider any von Neumann measurement P consisting of D one-dimensional
orthogonal projectors Πi. The Shannon entropy for the outcomes of this measurement is given by

H(P) = −
D∑

i=1

(trρΠi) log (trρΠi) . (78)

A natural question to ask is: With respect to a given density operator ρ, which measurement P will
give the most predictability over its outcomes? As it turns out, the answer is any P that forms a set
of eigenprojectors for ρ [82]. When this obtains, the Shannon entropy of the measurement outcomes
reduces to simply the von Neumann entropy of the density operator. The von Neumann entropy,
then, signifies the amount of impredictability one achieves by way of a standard measurement in a
best case scenario. Indeed, true to one’s intuition, one has the most predictability by this account
when ρ is a pure state—for then S(ρ) = 0. Alternatively, one has the least knowledge when ρ is
proportional to the identity operator—for then any measurement P will have outcomes that are all
equally likely.

The best case scenario for predictability, however, is a limited case, and not very indicative
of the density operator as a whole. Since the density operator contains, in principle, all that can
be said about every possible measurement, it seems a shame to throw away the vast part of that
information in our considerations.
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This leads to a second method for quantifying uncertainty in the quantum setting. For this, we
again rely on the Shannon information as our basic notion of impredictability. The difference is we
evaluate it with respect to a “typical” measurement rather than the best possible one. But typical
with respect to what? The notion of typical is only defined with respect to a given measure on the
set of measurements.

Regardless, there is a fairly canonical answer. There is a unique measure dΩΠ on the space of
one-dimensional projectors that is invariant with respect to all unitary operations. That in turn
induces a canonical measure dΩP on the space of von Neumann measurements P [83]. Using this
measure leads to the following quantity

S(ρ) =
∫

H(Π) dΩP

= −D

∫
(trρΠ) log (trρΠ) dΩΠ , (79)

which is intimately connected to the so-called quantum “subentropy” of Ref. [84]. This mean
entropy can be evaluated explicitly in terms of the eigenvalues of ρ and takes on the expression

S(ρ) =
1

ln 2

(
1
2

+
1
3

+ · · ·+ 1
D

)
+ Q(ρ) (80)

where the subentropy Q(ρ) is defined by

Q(ρ) = −
D∑

k=1


∏

i 6=k

λk

λk − λi


λk log λk . (81)

In the case where ρ has degenerate eigenvalues, λl = λm for l 6= m, one need only reset them to
λl + ε and λm − ε and consider the limit as ε → 0. The limit is convergent and hence Q(ρ) is finite
for all ρ. With this, one can also see that for a pure state ρ, Q(ρ) vanishes. Furthermore, since
S(ρ) is bounded above by log D, we know that

0 ≤ Q(ρ) ≤ log D − 1
ln 2

(
1
2

+ · · ·+ 1
D

)
≤ 1− γ

ln 2
, (82)

where γ is Euler’s constant. This means that for any ρ, Q(ρ) never exceeds approximately 0.60995
bits.

The interpretation of this result is the following. Even when one has maximal information
about a quantum system—i.e., one has a pure state for it—one can predict almost nothing about
the outcome of a typical measurement [40]. In the limit of large d, the outcome entropy for a typical
measurement is just a little over a half bit away from its maximal value. Having a mixed state
for a system, reduces one’s predictability even further, but indeed not by that much: The small
deviation is captured by the function in Eq. (81), which becomes a quantification of uncertainty in
its own right.

The way to get at a quantum statement of Eq. (76) is to make use of the fact that S(ρ) and
Q(ρ) are both concave in the variable ρ. [85] That is, for either function, we have

F (tρ̃0 + (1− t)ρ̃1) ≥ tF (ρ̃0) + (1− t)F (ρ̃1) , (83)

for any density operators ρ̃0 and ρ̃1 and any real number t ∈ [0, 1]. Therefore, one might hope that

F (ρ) ≥
∑

d

P (d)F (ρd) . (84)
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Such a result however—if it is true—cannot arise in the trivial fashion it did for the classical case
of Eq. (76). This is because generally (as already emphasized),

ρ 6=
∑

d

P (d)ρd (85)

for ρd defined as in Eq. (73). One therefore must be more roundabout if a proof is going to happen.
The key is in noticing that

ρ = ρ1/2Iρ1/2

=
∑

d

ρ1/2Edρ
1/2

=
∑

d

P (d)ρ̃d (86)

where
ρ̃d =

1
P (d)

ρ1/2Edρ
1/2 =

1
P (d)

ρ1/2A†dAdρ
1/2 . (87)

What is special about this decomposition of ρ is that for each d, ρd and ρ̃d have the same eigenvalues.
This follows since X†X and XX† have the same eigenvalues, for any operator X. In the present
case, setting X = Adρ

1/2 does the trick. Using the fact that both S(ρ) and Q(ρ) depend only upon
the eigenvalues of ρ we obtain:

S(ρ) ≥
∑

d

P (d)S(ρd) (88)

Q(ρ) ≥
∑

d

P (d)Q(ρd) , (89)

as we had been hoping for. Thus, in performing an efficient quantum measurement of a POVM
{Ed}, an observer can expect to be left with less uncertainty than he started with.31

In this sense, quantum “collapse” does indeed have some of the flavor of Bayes’ rule. But we can
expect more, and the derivation above hints at just the right ingredient: ρd and ρ̃d have the same
eigenvalues! To see the impact of this, let us once again explore the content of Eqs. (73) and (74).
A common way to describe their meaning is to use the operator polar-decomposition theorem [87]
to rewrite Eq. (73) in the form

ρd =
1

P (d)
UdE

1/2
d ρE

1/2
d U †

d , (90)

where Ud is a unitary operator. Since—subject only to the constraint of efficiency—the operators
Ad are not determined any further than Eq. (74), Ud can be any unitary operator whatsoever.
Thus, a customary way of thinking of the state-change process is to break it up into two conceptual
pieces. First there is a “raw collapse”:

ρ −→ σd =
1

P (d)
E

1/2
d ρE

1/2
d . (91)

Then, subject to the details of the measurement interaction and the particular outcome d, one
imagines the measuring device enforcing a further kind of “back-action” or “feedback” on the
measured system [88]:

σd −→ ρd = UdσdU
†
d . (92)

31By differing methods, a strengthening of this result in terms of a majorization property can be found in Refs. [85]
and [86].
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But this breakdown of the transition is a purely conceptual game.
Since the Ud are arbitrary to begin with, we might as well break down the state-change process

into the following (nonstandard) conceptual components. First one imagines an observer refining
his initial state of belief and simply plucking out a term corresponding to the “data” collected:

ρ =
∑

d

P (d)ρ̃d (93)

↓

ρ
d−→ ρ̃d . (94)

Finally, there may be a further “mental readjustment” of the observer’s beliefs, which takes into
account details both of the measurement interaction and the observer’s initial quantum state. This
is enacted via some (formal) unitary operation Vd:

ρ̃d −→ ρd = Vdρ̃dV
†
d . (95)

Putting the two processes together, one has the same result as the usual picture.
The resemblance between the process in Eq. (94) and the classical Bayes’ rule of Eq. (71) is

uncanny.32 By this way of viewing things, quantum collapse is indeed not such a violent state of
affairs after all. Quantum measurement is nothing more, and nothing less, than a refinement and a
readjustment of one’s initial state of belief. More general state changes of the form Eq. (63) come
about similarly, but with a further step of coarse-graining (i.e., throwing away information that
was in principle accessible).

Let us look at two limiting cases of efficient measurements. In the first, we imagine an observer
whose initial belief structure ρ = |ψ〉〈ψ| is a maximally tight state of belief. By this account, no
measurement whatsoever can refine it. This follows because, no matter what {Ed} is,

ρ1/2Edρ
1/2 = P (d)|ψ〉〈ψ| . (96)

The only state change that can come about from a measurement must be purely of the mental-
readjustment sort: We learn nothing new; we just change what we can predict as a consequence
of the side effects of our experimental intervention. That is to say, there is a sense in which the
measurement is solely disturbance. In particular, when the POVM is an orthogonal set of projectors
{Πi = |i〉〈i|} and the state-change mechanism is the von Neumann collapse postulate, this simply
corresponds to a readjustment according to unitary operators Ui whose action in the subspace
spanned by |ψ〉 is

|i〉〈ψ| . (97)

At the opposite end of things, we can contemplate measurements that have no possibility at
all of causing a physical disturbance to the system being measured. This could come about, for
instance, by interacting with one side of an entangled pair of systems and using the consequence of
that intervention to update one’s beliefs about the other side. In such a case, one can show that
the state change is purely of the refinement variety (with no further mental readjustment).33 For
instance, consider a pure state |ψAB〉 whose Schmidt decomposition takes the form

|ψAB〉 =
∑

i

√
λi|ai〉|bi〉 . (98)

32Other similarities between quantum collapse and Bayesian conditionalization have been discussed in Refs. [89,
90, 91].

33This should be contrasted with the usual picture of a “minimally disturbing” measurement of some POVM. In
our case, a minimal disturbance version of a POVM {Ed} corresponds to taking Vd = I for all d in Eq. (95). In
the usual presentation—see Refs. [85] and [88]—it corresponds to taking Ud = I for all d in Eq. (92) instead. For
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An efficient measurement on the A side of this leads to a state update of the form

|ψAB〉〈ψAB| −→ (Ad ⊗ I)|ψAB〉〈ψAB|(A†d ⊗ I) . (99)

Tracing out the A side, then gives

trA

(
Ad ⊗ I|ψAB〉〈ψAB|A†d ⊗ I

)
=

∑

ijk

√
λj

√
λk〈ai|Ad ⊗ I|aj〉|bj〉〈ak|〈bk|A†d ⊗ I|ai〉

=
∑

ijk

√
λj

√
λk〈ak|A†d|ai〉〈ai|Ad|aj〉|bj〉〈bk|

=
∑

jk

√
λj

√
λk〈ak|A†dAd|aj〉|bj〉〈bk|

=
∑

jk

√
λj

√
λk〈bk|UA†dAdU

†|bj〉|bj〉〈bk|

=
∑

jk

√
λj

√
λk〈bj |

(
UA†dAdU

†
)T|bk〉|bj〉〈bk|

= ρ1/2
(
UA†dAdU

†
)T

ρ1/2 (100)

where ρ is the initial quantum state on the B side, U is the unitary operator connecting the |ai〉
basis to the |bi〉 basis, and T represents taking a transpose with respect to the |bi〉 basis. Since the
operators

Fd =
(
UA†dAdU

†
)T

(101)

go together to form a POVM, we indeed have the claimed result.
In summary, the lesson here is that it turns out to be rather easy to think of quantum collapse

as a noncommutative variant of Bayes’ rule. In fact it is just in this that one starts to get a feel
for a further reason for Gleason’s noncontextuality assumption. In the setting of classical Bayesian
conditionalization we have just that: The probability of the transition P (h) −→ P (h|d) is governed
solely by the local probability P (d). The transition does not care about how we have partitioned the
rest of the potential transitions. That is, it does not care whether d is embedded in a two outcome
set {d,¬d} or whether it is embedded in a three outcome set, {d, e,¬(d ∨ e)}, etc. Similarly with
the quantum case. The probability for a transition from ρ to ρ0 cares not whether our refinement
is of the form

ρ = P (0)ρ0 +
17∑

d=1

P (d)ρd or of the form ρ = P (0)ρ0 + P (18)ρ18 , (102)

as long as

P (18)ρ18 =
17∑

d=1

P (d)ρd (103)

instance, Howard Wiseman writes in Ref. [88]:

The action of
[
E

1/2
d

]
produces the minimum change in the system, required by Heisenberg’s relation, to

be consistent with a measurement giving the information about the state specified by the probabilities
[Eq. (8)]. The action of [Ud] represents additional back-action, an unnecessary perturbation of the
system. . . . A back-action evading measurement is reasonably defined by the requirement that, for all
[d], [Ud] equals unity (up to a phase factor that can be ignored without loss of generality).

This of course means that, from the present point of view, there is no such thing as a state-independent notion of min-
imally disturbing measurement. Given an initial state ρ and a POVM {Ed}, the minimally disturbing measurement
interaction is the one that produces pure Bayesian updating with no further (purely quantum) readjustment.
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What could be a simpler generalization of Bayes’ rule?
Indeed, leaning on that, we can restate the discussion of the “measurement problem” at the be-

ginning of Section 4 in slightly more technical terms. Go back to the classical setting of Eqs. (70) and
(72) where an agent has a probability distribution P (h, d) over two sets of hypotheses. Marginal-
izing over the possibilities for d, one obtains the agent’s initial belief P (h) about the hypothesis h.
If he gathers an explicit piece of data d, he should use Bayes’ rule to update his probability about
h to P (h|d).

The question is this: Is the transition

P (h) −→ P (h|d) (104)

a mystery we should contend with? If someone asked for a physical description of this transition,
would we be able to give an explanation? After all, one value for h is true and always remains true:
there is no transition in it. One value for d is true and always remains true: there is no transition
in it. The only discontinuous transition is in the belief P (h), and that presumably is a property of
the believer’s brain. To put the issue into terms that start to sound like the quantum measurement
problem, let us ask: Should we not have a detailed theory of how the brain works before we can
trust in the validity of Bayes’ rule? 34

The answer is, “Of course not!” Bayes’ rule—and beyond it all of probability theory—is a tool
that stands above the details of physics. George Boole called probability theory a law of thought [94].
Its calculus specifies the optimal way an agent should reason and make decisions when faced with
incomplete information. In this way, probability theory is a generalization of Aristotelian logic35—a
tool of thought few would accept as being anchored to the details of the physical world.36 As far as
Bayesian probability theory is concerned, a “classical measurement” is simply any I-know-not-what
that induces an application of Bayes’ rule. It is not the task of probability theory (nor is it solvable
within probability theory) to explain how the transition Bayes’ rule signifies comes about within
the mind of the agent.

34This point was recently stated much more eloquently by Rocco Duvenhage in his paper Ref. [92]:

In classical mechanics a measurement is nothing strange. It is merely an event where the observer
obtains information about some physical system. A measurement therefore changes the observer’s
information regarding the system. One can then ask: What does the change in the observer’s information
mean? What causes it? And so on. These questions correspond to the questions above, but now they
seem tautological rather than mysterious, since our intuitive idea of information tells us that the change
in the observer’s information simply means that he has received new information, and that the change
is caused by the reception of the new information. We will see that the quantum case is no different . . .

Let’s say an observer has information regarding the state of a classical system, but not necessarily
complete information (this is the typical case, since precise measurements are not possible in practice).
Now the observer performs a measurement on the system to obtain new information . . . The observer’s
information after this measurement then differs from his information before the measurement. In other
words, a measurement “disturbs” the observer’s information. . . .

The Heisenberg cut. This refers to an imaginary dividing line between the observer and the system
being observed . . . It can be seen as the place where information crosses from the system to the observer,
but it leads to the question of where exactly it should be; where does the observer begin? In practice
it’s not really a problem: It doesn’t matter where the cut is. It is merely a philosophical question
which is already present in classical mechanics, since in the classical case information also passes from
the system to the observer and one could again ask where the observer begins. The Heisenberg cut is
therefore no more problematic in quantum mechanics than in classical mechanics.

35In addition to Ref. [76], many further materials concerning this point of view can be downloaded from the
Probability Theory As Extended Logic web site maintained by G. L. Bretthorst, http://bayes.wustl.edu/.

36We have, after all, used simple Aristotelian logic in making deductions from all our physical theories to date:
from Aristotle’s physics to quantum mechanics to general relativity and even string theory.
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The formal similarities between Bayes’ rule and quantum collapse may be telling us how to
finally cut the Gordian knot of the measurement problem. Namely, it may be telling us that it
is simply not a problem at all! Indeed, drawing on the analogies between the two theories, one
is left with a spark of insight: perhaps the better part of quantum mechanics is simply “law of
thought” [56]. Perhaps the structure of the theory denotes the optimal way to reason and make
decisions in light of some fundamental situation—a fundamental situation waiting to be ferreted
out in a more satisfactory fashion.

This much we know: That fundamental situation—whatever it is—must be an ingredient
Bayesian probability theory does not have. As already emphasized, there must be something
to drive a wedge between the two theories. Probability theory alone is too general a structure.
Narrowing the structure will require input from the world around us.

6.1 Accepting Quantum Mechanics

Looking at the issue from this perspective, let us ask: What does it mean to accept quantum
mechanics? Does it mean accepting (in essence) the existence of an “expert” whose probabilities
we should strive to possess whenever we strive to be maximally rational? [93] The key to answering
this question comes from combining the previous discussion of Bayes’ rule with the considerations
of the standard quantum-measurement device of Section 4.2. For, contemplating this will allow us
to go even further than calling quantum collapse a noncommutative variant of Bayes’ rule.

Consider the description of quantum collapse in Eqs. (93) through (95) in terms of one’s sub-
jective judgments for the outcomes of a standard quantum measurement {Eh}. Using the notation
there, one starts with an initial judgment

P (h) = tr(ρEh) (105)

and, after a measurement of some other observable {Ed}, ends up with a final judgment

Pd(h) = tr(ρdEh) = tr(ρ̃dV
†
d EhVd) = tr(ρ̃dF

d
h ) , (106)

where
F d

h = V †
d EhVd . (107)

Note that, in general, {Eh} and {Ed} refer to two entirely different POVMs; the range of their
indices h and d need not even be the same. Also, since {Eh} is a minimal informationally complete
POVM, {F d

h} will itself be informationally complete for each value of d.
Thus, modulo a final unitary readjustment or redefinition of the standard quantum measurement

based on the data gathered, one has precisely Bayes’ rule in this transition. This follows since

ρ =
∑

d

P (d)ρ̃d (108)

implies
P (h) =

∑

d

P (d)P (h|d) , (109)

where
P (h|d) = tr(ρ̃dEh) . (110)

Another way of looking at this transition is from the “active” point of view, i.e., that the axes
of the probability simplex are held fixed, while the state is transformed from P (h|d) to Pd(h). That
is, writing

F d
h =

D2∑

h′=1

Γd
hh′Eh′ (111)
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Figure 2: A quantum measurement is any “I-know-not-what” that generates an application of
Bayes’ rule to one’s beliefs for the outcomes of a standard quantum measurement—that is, a
decomposition of the initial state into a convex combination of other states and then a final “choice”
(decided by the world, not the observer) within that set. Taking into account the idea that quantum
measurements are “invasive” or “disturbing” alters the classical Bayesian picture only in introducing
a further outcome-dependent readjustment: One can either think of it passively as a readjustment
of the standard quantum measurement device, or actively (as depicted here) as a further adjustment
to the posterior state.

where Γd
hh′ are some real-valued coefficients and {Eh′} refers to a relabeling of the original standard

quantum measurement, we get

Pd(h) =
D2∑

h′=1

Γd
hh′P (h′|d) . (112)

This gives an enticingly simple description of what quantum measurement is in Bayesian terms.
Modulo the final readjustment, a quantum measurement is any application of Bayes’ rule whatsoever
on the initial state P (h). By any application of Bayes’ rule, I mean in particular any convex
decomposition of P (h) into some refinements P (h|d) that also live in PSQM.37 Aside from the final
readjustment, a quantum measurement is just like a classical measurement: It is any I-know-not-
what that pushes an agent to an application of Bayes’ rule.38

Accepting the formal structure of quantum mechanics is—in large part—simply accepting that
it would not be in one’s best interest to hold a P (h) that falls outside the convex set PSQM. Moreover,
up to the final conditionalization rule signified by a unitary operator Vd, a measurement is simply

37Note a distinction between this way of posing Bayes’ rule and the usual way. In stating it, I give no status to
a joint probability distribution P (h, d). If one insists on calling the product P (d)P (h|d) a joint distribution P (h, d),
one can do so of course, but it is only a mathematical artifice without intrinsic meaning. In particular, one should
not get a feeling from P (h, d)’s mathematical existence that the random variables h and d simultaneously coexist. As
always, h and d stand only for the consequences of experimental interventions into nature; without the intervention,
there is no h and no d.

38Of course, I fear the wrath my choice of words “any I-know-not-what” will bring down upon me. For it will
be claimed—I can see it now, rather violently—that I do not understand the first thing of what the “problem” of
quantum measurement is: It is to supply a mechanism for understanding how collapse comes about, not to dismiss
it. But my language is honest language and meant explicitly to leave nothing hidden. The point here, as already
emphasized in the classical case, is that it is not the task—and cannot be the task—of a theory that makes intrinsic
use of probability to justify how an agent has gotten hold of a piece of information that causes him to change his
beliefs. A belief is a property of one’s head, not of the object of one’s interest.
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anything that can cause an application of Bayes’ rule within PSQM.
But if there is nothing more than arbitrary applications of Bayes’ rule to ground the concept

of quantum measurement, would not the solidity of quantum theory melt away? What else can
determine when “this” rather than “that” measurement is performed? Surely that much has to be
objective about the theory?

7 What Else Is Information?

That’s territory I’m not yet ready to follow you into.
Good luck!

— N. David Mermin, 2002

Suppose one wants to hold adamantly to the idea that the quantum state is purely subjective.
That is, that there is no right and true quantum state for a system—the quantum state is “nu-
merically additional” to the quantum system. It walks through the door when the agent who is
interested in the system walks through the door. Can one consistently uphold this point of view at
the same time as supposing that which POVM {Ed} and which state-change rule ρ −→ ρd = AdρA†d
a measurement device performs are objective features of the device? The answer is no, and it is
not difficult to see why.

Take as an example, a device that supposedly performs a standard von Neumann measurement
{Πd}, the measurement of which is accompanied by the standard collapse postulate. Then when
a click d is found, the posterior quantum state will be ρd = Πd regardless of the initial state ρ. If
this state-change rule is an objective feature of the device or its interaction with the system—i.e.,
it has nothing to do with the observer’s subjective judgment—then the final state ρd too must be
an objective feature of the quantum system. The argument is that simple. Furthermore, it clearly
generalizes to all state change rules for which the Ad are rank-one operators without adding any
further complications.

Also though, since the operators Ed control the maximal support 39 of the final state ρd through
Ad = UdE

1/2
d , it must be that even the Ed themselves are subjective judgments. For otherwise, one

would have a statement like, “Only states with support within a subspace Sd are correct. All other
states are simply wrong.”40

Thinking now of uninterrupted quantum time evolution as the special case of what happens to a
state after the single-element POVM {I} is performed, one is forced to the same conclusion even in
that case. The time evolution super-operator for a quantum system—most generally a completely
positive trace-preserving linear map on the space of operators for HD [50]—is a subjective judgment
on exactly the same par as the subjectivity of the quantum state.

Here is another way of seeing the same thing. Recall what I viewed to be the most powerful
argument for the quantum state’s subjectivity—the Einsteinian argument of Section 3. Since we
can toggle the quantum state from a distance, it must not be something sitting over there, but
rather something sitting over here: It can only be our information about the far-away system. Let
us now apply a variation of this argument to time evolutions.

Consider a simple quantum circuit on a bipartite quantum system that performs a controlled
unitary operation Ui on the target bit. (For simplicity, let us say the bipartite system consists of
two qubits.) Which unitary operation the circuit applies depends upon which state |i〉, i = 0, 1, of

39The support of an operator is the subspace spanned by its eigenvectors with nonzero eigenvalues.
40Such a statement, in fact, is not so dissimilar to the one found in Ref. [95]. For several rebuttals of that idea, see

Ref. [2] and [96].
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Figure 3: One can use a slight modification of Einstein’s argument for the subjectivity of the quan-
tum state to draw the same conclusion for quantum time evolutions. By performing measurements
on a far away system, one will ascribe one or another completely positive map to the evolution
of the left-most qubit. Therefore, accepting physical locality, the time evolution map so ascribed
cannot be a property intrinsic to the system.

two orthogonal states impinges upon the control bit. Thus, for an arbitrary state |ψ〉 on the target,
one finds

|i〉|ψ〉 −→ |i〉(Ui|ψ〉) (113)

for the overall evolution. Consequently the evolution of the target system alone is given by

|ψ〉 −→ Ui|ψ〉 (114)

On the other hand, suppose the control bit is prepared in a superposition state |φ〉 = α|0〉+ β|1〉.
Then the evolution for the target bit will be given by a completely positive map Φφ. That is,

|ψ〉 −→ Φφ(|ψ〉〈ψ|) = |α|2 U0|ψ〉〈ψ|U †
0 + |β|2 U1|ψ〉〈ψ|U †

1 . (115)

Now, to the point. Suppose rather than feeding a single qubit into the control bit, we feed half
of an entangled pair, where the other qubit is physically far removed from the circuit. If an observer
with this description of the whole set-up happens to make a measurement on the far-away qubit,
then he will be able to induce any of a number of completely positive maps Φφ on the control bit.
These will depend upon which measurement he performs and which outcome he gets. The point
is the same as before: Invoking physical locality, one obtains that the time evolution mapping on
the single qubit cannot be an objective state of affairs localized at that qubit. The time evolution,
like the state, is subjective information. 4142

41Of course, there are sideways moves one can use to try to get around this conclusion. For instance, one could
argue that, “The time evolution operator Φ on the control qubit is only an ‘effective’ evolution for it. The ‘true’
evolution for the system is the unitary evolution specified by the complete quantum circuit.”[97] In my opinion,
however, moves like this are just prostrations to the Everettic temple. One could dismiss the original Einsteinian
argument in the same way: “The observer toggles nothing with his localized measurement; the ‘true’ quantum state is
the universal quantum state. All that is going on in a quantum measurement is the revelation of a relative state—i.e.,
the ‘effective’ quantum state.” How can one argue with this, other than to say it is not the most productive stance
and that the evidence shows that since 1957 it has not been able to quell the foundations debate. See Footnote 12.

42A strengthening of this argument may also be found in the same way as in Section 3: Namely, by considering the
teleportation of quantum dynamics. I will for the moment, however, leave that as an exercise for the reader. See the
many references in Ref. [98] for appropriate background.
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It has long been known that the trace preserving completely positive linear maps Φ over a
D-dimensional vector space can be placed in a one-to-one correspondence with density operators
on a D2-dimensional space via the relation [79, 99, 100]

Υ = I ⊗ Φ(|ψME〉〈ψME|) (116)

where |ψME〉 signifies a maximally entangled state on HD ⊗HD,

|ψME〉 =
1√
D

D∑

i=1

|i〉|i〉 . (117)

This is usually treated as a convenient representation theorem only, but maybe it is no mathematical
accident. Perhaps there is a deep physical reason for it: The time evolution one ascribes to a
quantum system IS a density operator! It is a quantum state of belief no more and no less than
the initial quantum state one assigns to that same system.

How to think about this? Let us go back to the issue that closed the last section. How can
one possibly identify the meaning of a measurement in the Bayesian view, where a measurement
ascription is itself subjective—i.e., a measurement finds a mathematical expression only in the
subjective refinement of some agent’s beliefs? Here is the difficulty. When one agent contemplates
viewing a piece of data d, he might be willing to use the data to refine his beliefs according to

P (h) =
∑

d

P (d)P (h|d) . (118)

However there is nothing to stop another agent from thinking the same data warrants him to refine
his beliefs according to

Q(h) =
∑

d

Q(d)Q(h|d) . (119)

A priori, there need be no relation between the P ’s and the Q’s.
A relation only comes when one seeks a criterion for when the two agents will say that they

believe they are drawing the same meaning from the data they obtain. That identification is a
purely voluntary act; for there is no way for the agent to walk outside of his beliefs and see the
world as it completely and totally is. The standard Bayesian solution to the problem is this:
When both agents accept the same “statistical model” for their expectations of the data d given a
hypothesis h, then they will agree to the identity of the measurements they are each (separately)
considering. I.e., two agents will say they are performing the same measurement when and only
when

P (d|h) = Q(d|h) , ∀h and ∀d . (120)

Putting this in a more evocative form, we can say that both agents agree to the meaning of a
measurement when they adopt the same resolution of the identity

1 =
∑

d

P (d)P (h|d)
P (h)

=
∑

d

Q(d)Q(h|d)
Q(h)

. (121)

with which to describe it.
With this, the relation to quantum measurement should be apparent. If we take it seriously

that a measurement is anything that generates a refinement of one’s beliefs, then an agent specifies
a measurement when he specifies a resolution of his initial density operator

ρ =
∑

d

P (d) ρ̃d . (122)

41



But again, there is nothing to stop another agent from thinking the data warrants a refinement
that is completely unrelated to the first:

σ =
∑

d

Q(d) σ̃d . (123)

And that is where the issue ends if the agents have no further agreement.
Just as in the classical case, however, there is a solution for the identification problem. Using

the canonical construction of Eq. (86), we can say that both agents agree to the meaning of a
measurement when they adopt the same resolution of the identity,

I =
∑

d

P (d) ρ−1/2ρ̃d ρ−1/2 =
∑

d

Q(d) σ−1/2σ̃d σ−1/2 (124)

with which to describe it.
Saying it in a more tautological way, two agents will be in agreement on the identity of a

measurement when they assign it the same POVM {Ed},

Ed = P (d) ρ−1/2ρ̃d ρ−1/2 = Q(d) σ−1/2σ̃d σ−1/2 . (125)

The importance of this move, however, is that it draws out the proper way to think about the
operators Ed from the present perspective. They play part of the role of the “statistical model”
P (d|h). More generally, that role is fulfilled by the complete state change rule:

P (d|h) ←→ ρ → ρd (126)

That is to say, drawing the correspondence in different terms,

P (d|h) ←→ Φd(·) = UdE
1/2
d · E1/2

d U †
d . (127)

(Of course, more generally—for nonefficient measurements—Φd(·) may consist of a convex sum of
such terms.)

The completely positive map that gives a mathematical description to quantum time evolution
is just such a map. Its role is that of the subjective statistical model P (d|h), where d just happens
to be drawn from a one-element set.

Thus, thinking back on entanglement, it seems the general structure of quantum time evolutions
cannot the wedge we are looking for either. What we see instead is that there is a secret waiting
to be unlocked, and when it is unlocked, it will very likely tell us as much about quantum time
evolutions as quantum states and quantum measurements.

8 Intermission

Let us take a deep breath. Up until now I have tried to trash about as much quantum mechanics
as I could, and I know that takes a toll—it has taken one on me. Section 3 argued that quantum
states—whatever they are—cannot be objective entities. Section 4 argued that there is nothing
sacred about the quantum probability rule and that the best way to think of a quantum state is as a
state of belief about what would happen if one were to ever approach a standard measurement device
locked away in a vault in Paris. Section 5 argued that even our hallowed quantum entanglement is
a secondary and subjective effect. Section 6 argued that all a measurement is is just an arbitrary
application of Bayes’ rule—an arbitrary refinement of one’s beliefs—along with some account that
measurements are invasive interventions into nature. Section 7 argued that even quantum time
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evolutions are subjective judgments; they just so happen to be conditional judgments. . . . And, so
it went.

Subjective. Subjective! Subjective!! It is a word that will not go away. But subjectivity is
not something to be worshipped for its own sake. There are limits: The last thing we need is a
bloodbath of deconstruction. At the end of the day, there had better be some term, some element
in quantum theory that stands for the objective, or we might as well melt away and call this all a
dream.

I turn now to a more constructive phase.

9 Unknown Quantum States?

My thesis, paradoxically, and a little provocatively, but
nonetheless genuinely, is simply this:

QUANTUM STATES DO NOT EXIST.

The abandonment of superstitious beliefs about the ex-
istence of Phlogiston, the Cosmic Ether, Absolute Space
and Time, ..., or Fairies and Witches, was an essential step
along the road to scientific thinking. The quantum state,
too, if regarded as something endowed with some kind of
objective existence, is no less a misleading conception, an
illusory attempt to exteriorize or materialize our true prob-
abilistic beliefs.

— the true ghost of Bruno de Finetti

The hint of a more fruitful direction can be found by trying to make sense of one of the most
commonly used phrases in quantum information theory from a Bayesian perspective. It is the
unknown quantum state. There is hardly a paper in quantum information that does not make
use of it. Unknown quantum states are teleported [23], protected with quantum error correcting
codes [101], and used to check for quantum eavesdropping [102]. The list of uses grows each day.
But what can the term mean? In an information-based interpretation of quantum mechanics, it is
an oxymoron: If quantum states, by their very definition, are states of subjective information and
not states of nature, then the state is known by someone—at the very least, by the person who
wrote it down.

Thus, if a phenomenon ostensibly invokes the concept of an unknown state in its formulation,
that unknown state had better be shorthand for a more basic situation (even if that basic situation
still awaits a complete analysis). This means that for any phenomenon using the idea of an unknown
quantum state in its description, we should demand that either

1. The owner of the unknown state—a further decision-making agent or observer—be explicitly
identified. (In this case, the unknown state is merely a stand-in for the unknown state of
belief of an essential player who went unrecognized in the original formulation.) Or,

2. If there is clearly no further agent or observer on the scene, then a way must be found
to reexpress the phenomenon with the term “unknown state” completely banished from its
formulation. (In this case, the end-product of the effort will be a single quantum state used for
describing the phenomenon—namely, the state that actually captures the describer’s overall
set of beliefs throughout.)

This Section reports the work of Ref. [32] and [33], where such a project is carried out for the
experimental practice of quantum-state tomography [31]. The usual description of tomography is
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this. A device of some sort, say a nonlinear optical medium driven by a laser, repeatedly prepares
many instances of a quantum system, say many temporally distinct modes of the electromagnetic
field, in a fixed quantum state ρ, pure or mixed [103]. An experimentalist who wishes to characterize
the operation of the device or to calibrate it for future use may be able to perform measurements
on the systems it prepares even if he cannot get at the device itself. This can be useful if the
experimenter has some prior knowledge of the device’s operation that can be translated into a
probability distribution over states. Then learning about the state will also be learning about the
device. Most importantly, though, this description of tomography assumes that the precise state ρ
is unknown. The goal of the experimenter is to perform enough measurements, and enough kinds
of measurements (on a large enough sample), to estimate the identity of ρ.

This is clearly an example where there is no further player on whom to pin the unknown state
as a state of belief or judgment. Any attempt to find such a missing player would be entirely
artificial: Where would the player be placed? On the inside of the device the tomographer is trying
to characterize?43 The only available course is the second strategy above—to banish the idea of
the unknown state from the formulation of tomography.

To do this, we once again take our cue from Bayesian probability theory [75, 76, 77]. As em-
phasized previously, in Bayesian theory probabilities—just like quantum states—are not objective
states of nature, but rather measures of belief, reflecting one’s operational commitments in vari-
ous gambling scenarios. In light of this, it comes as no surprise that one of the most overarching
Bayesian themes is to identify the conditions under which a set of decision-making agents can come
to a common belief or probability assignment for a random variable even though their initial beliefs
may differ [77]. Following that theme is the key to understanding the essence of quantum-state
tomography.

Indeed, classical Bayesian theory encounters almost precisely the same problem as our unknown
quantum state through the widespread use of the phrase “unknown probability” in its domain. This
is an oxymoron every bit as egregious as unknown state.

The procedure analogous to quantum-state tomography in Bayesian theory is the estimation of
an unknown probability from the results of repeated trials on “identically prepared systems.” The
way to eliminate unknown probabilities from this situation was introduced by Bruno de Finetti in
the early 1930s [104]. His method was simply to focus on the equivalence of the repeated trials—
namely, that what is really important is that the systems are indistinguishable as far as probabilistic
predictions are concerned. Because of this, any probability assignment p(x1, x2, . . . , xN ) for multiple
trials should be symmetric under permutation of the systems. As innocent as this conceptual shift
may sound, de Finetti was able to use it to powerful effect. For, with his representation theorem, he
showed that any multi-trial probability assignment that is permutation-symmetric for an arbitrarily
large number of trials—de Finetti called such multi-trial probabilities exchangeable—is equivalent
to a probability for the “unknown probabilities.”

Let us outline this in a little more detail. In an objectivist description of N “identically pre-
pared systems,” the individual trials are described by discrete random variables xn ∈ {1, 2, . . . , k},
n = 1, . . . , N , and the probability in the multi-trial hypothesis space is given by an independent

43Placing the player here would be about as respectable as George Berkeley’s famous patch to his philosophical
system of idealism. The difficulty is captured engagingly by a limerick of Ronald Knox and its anonymous reply:

There was a young man who said, “God : Must think it exceedingly odd : If he finds that this tree :
Continues to be : When there’s no one about in the Quad.” REPLY: “Dear Sir: Your astonishment’s
odd. : I am always about in the Quad. : And that’s why the tree : Will continue to be, : Since
observed by Yours faithfully, God.”
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identically distributed distribution

p(x1, x2, . . . , xN ) = px1px2 · · · pxN = pn1
1 pn2

2 · · · pnk
k . (128)

The numbers pj describe the objective, “true” probability that the result of a single experiment will
be j (j = 1, . . . , k). The variable nj , on the other hand, describes the number of times outcome j is
listed in the vector (x1, x2, . . . , xN ). But this description—for the objectivist—only describes the
situation from a kind of “God’s eye” point of view. To the experimentalist, the “true” probabilities
p1, . . . , pk will very often be unknown at the outset. Thus, his burden is to estimate the unknown
probabilities by a statistical analysis of the experiment’s outcomes.

In the Bayesian approach, however, it does not make sense to talk about estimating a true
probability. Instead, a Bayesian assigns a prior probability distribution p(x1, x2, . . . , xN ) on the
multi-trial hypothesis space and uses Bayes’ theorem to update the distribution in the light of his
measurement results. The content of de Finetti’s theorem is this. Assuming only that

p(xπ(1), xπ(2), . . . , xπ(N)) = p(x1, x2, . . . , xN ) (129)

for any permutation π of the set {1, . . . , N}, and that for any integer M > 0, there is a distribution
pN+M (x1, x2, . . . , xN+M ) with the same permutation property such that

p(x1, x2, . . . , xN ) =
∑

xN+1,...,xN+M

pN+M (x1, . . . , xN , xN+1, . . . , xN+M ) , (130)

then p(x1, x2, . . . , xN ) can be written uniquely in the form

p(x1, x2, . . . , xN ) =
∫

Sk

P (~p ) px1px2 · · · pxN d~p

=
∫

Sk

P (~p ) pn1
1 pn2

2 · · · pnk
k d~p , (131)

where ~p = (p1, p2, . . . , pk), and the integral is taken over the simplex of such distributions

Sk =



~p : pj ≥ 0 for all j and

k∑

j=1

pj = 1



 . (132)

Furthermore, the function P (~p ) ≥ 0 is required to be a probability density function on the simplex:
∫

Sk

P (~p ) d~p = 1 , (133)

With this representation theorem, the unsatisfactory concept of an unknown probability vanishes
from the description in favor of the fundamental idea of assigning an exchangeable probability
distribution to multiple trials.

With this cue in hand, it is easy to see how to reword the description of quantum-state tomog-
raphy to meet our goals. What is relevant is simply a judgment on the part of the experimenter—
notice the essential subjective character of this “judgment”—that there is no distinction between
the systems the device is preparing. In operational terms, this is the judgment that all the systems
are and will be the same as far as observational predictions are concerned. At first glance this
statement might seem to be contentless, but the important point is this: To make this statement,
one need never use the notion of an unknown state—a completely operational description is good
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enough. Putting it into technical terms, the statement is that if the experimenter judges a collec-
tion of N of the device’s outputs to have an overall quantum state ρ(N), he will also judge any
permutation of those outputs to have the same quantum state ρ(N). Moreover, he will do this no
matter how large the number N is. This, complemented only by the consistency condition that for
any N the state ρ(N) be derivable from ρ(N+1), makes for the complete story.

The words “quantum state” appear in this formulation, just as in the original formulation of
tomography, but there is no longer any mention of unknown quantum states. The state ρ(N) is
known by the experimenter (if no one else), for it represents his judgment. More importantly,
the experimenter is in a position to make an unambiguous statement about the structure of the
whole sequence of states ρ(N): Each of the states ρ(N) has a kind of permutation invariance over its
factors. The content of the quantum de Finetti representation theorem [32, 105] is that a sequence
of states ρ(N) can have these properties, which are said to make it an exchangeable sequence, if and
only if each term in it can also be written in the form

ρ(N) =
∫

DD

P (ρ) ρ⊗N dρ , (134)

where ρ⊗N = ρ ⊗ ρ ⊗ · · · ⊗ ρ is an N -fold tensor product. Here P (ρ) ≥ 0 is a fixed probability
distribution over the density operator space DD, and

∫

DD

P (ρ) dρ = 1 , (135)

where dρ is a suitable measure.
The interpretive import of this theorem is paramount. For it alone gives a mandate to the term

unknown state in the usual description of tomography. It says that the experimenter can act as if
his judgment ρ(N) comes about because he knows there is a “man in the box,” hidden from view,
repeatedly preparing the same state ρ. He does not know which such state, and the best he can
say about the unknown state is captured in the probability distribution P (ρ).

The quantum de Finetti theorem furthermore makes a connection to the overarching theme of
Bayesianism stressed above. It guarantees for two independent observers—as long as they have a
rather minimal agreement in their initial beliefs—that the outcomes of a sufficiently informative set
of measurements will force a convergence in their state assignments for the remaining systems [33].
This “minimal” agreement is characterized by a judgment on the part of both parties that the
sequence of systems is exchangeable, as described above, and a promise that the observers are not
absolutely inflexible in their opinions. Quantitatively, the latter means that though P (ρ) may be
arbitrarily close to zero, it can never vanish.

This coming to agreement works because an exchangeable density operator sequence can be
updated to reflect information gathered from measurements by another quantum version of Bayes’s
rule for updating probabilities [33]. Specifically, if measurements on K systems yield results DK ,
then the state of additional systems is constructed as in Eq. (134), but using an updated probability
on density operators given by

P (ρ|DK) =
P (DK |ρ)P (ρ)

P (DK)
. (136)

Here P (DK |ρ) is the probability to obtain the measurement results DK , given the state ρ⊗K for
the K measured systems, and

P (DK) =
∫

DD

P (DK |ρ) P (ρ) dρ (137)
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is the unconditional probability for the measurement results. For a sufficiently informative set of
measurements, as K becomes large, the updated probability P (ρ|DK) becomes highly peaked on a
particular state ρDK

dictated by the measurement results, regardless of the prior probability P (ρ),
as long as P (ρ) is nonzero in a neighborhood of ρDK

. Suppose the two observers have different
initial beliefs, encapsulated in different priors Pi(ρ), i = 1, 2. The measurement results force them
to a common state of belief in which any number N of additional systems are assigned the product
state ρ⊗N

DK
, i.e., ∫

Pi(ρ|DK) ρ⊗N dρ −→ ρ⊗N
DK

, (138)

independent of i, for K sufficiently large.
This shifts the perspective on the purpose of quantum-state tomography: It is not about uncov-

ering some “unknown state of nature,” but rather about the various observers’ coming to agreement
over future probabilistic predictions. In this connection, it is interesting to note that the quantum
de Finetti theorem and the conclusions just drawn from it work only within the framework of com-
plex vector-space quantum mechanics. For quantum mechanics based on real Hilbert spaces [106],
the connection between exchangeable density operators and unknown quantum states does not
hold.

A simple counterexample is the following. Consider the N -system state

ρ(N) =
1
2
ρ⊗N
+ +

1
2
ρ⊗N
− , (139)

where
ρ+ =

1
2
(I + σ2) and ρ− =

1
2
(I − σ2) (140)

and σ1, σ2, and σ3 are the Pauli matrices. In complex-Hilbert-space quantum mechanics, Eq. (139)
is clearly a valid density operator: It corresponds to an equally weighted mixture of N spin-up
particles and N spin-down particles in the y-direction. The state ρ(N) is thus exchangeable, and
the decomposition in Eq. (139) is unique according to the quantum de Finetti theorem.

But now consider ρ(N) as an operator in real-Hilbert-space quantum mechanics. Despite its
ostensible use of the imaginary number i, it remains a valid quantum state. This is because,
upon expanding the right-hand side of Eq. (139), all the terms with an odd number of σ2’s cancel
away. Yet, even though it is an exchangeable density operator, it cannot be written in de Finetti
form Eq. (134) using only real symmetric operators. This follows because iσ2 cannot be written
as a linear combination of I, σ1, and σ3, while a real-Hilbert-space de Finetti expansion as in
Eq. (134) can only contain those three operators. Hence the de Finetti theorem does not hold in
real-Hilbert-space quantum mechanics.

In classical probability theory, exchangeability characterizes those situations where the only
data relevant for updating a probability distribution are frequency data, i.e., the numbers nj

in Eq. (131). The quantum de Finetti representation shows that the same is true in quantum
mechanics: Frequency data (with respect to a sufficiently robust measurement, in particular, any
one that is informationally complete) are sufficient for updating an exchangeable state to the
point where nothing more can be learned from sequential measurements. That is, one obtains a
convergence of the form Eq. (138), so that ultimately any further measurements on the individual
systems will be statistically independent. That there is no quantum de Finetti theorem in real
Hilbert space means that there are fundamental differences between real and complex Hilbert
spaces with respect to learning from measurement results.

Finally, in summary, let us hang on the point of learning for just a little longer. The quantum
de Finetti theorem shows that the essence of quantum-state tomography is not in revealing an
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“element of reality” but in deriving that various agents (who agree some minimal amount) can
come to agreement in their ultimate quantum-state assignments. This is not at all the same thing
as the statement “reality does not exist.” It is simply that one need not go to the extreme of taking
the “unknown quantum state” as being objectively real to make sense of the experimental practice
of tomography.

J. M. Bernardo and A. F. M. Smith in their book Ref. [77] word the goal of these exercises we
have run through in this paper very nicely:

[I]ndividual degrees of belief, expressed as probabilities, are inescapably the starting
point for descriptions of uncertainty. There can be no theories without theoreticians;
no learning without learners; in general, no science without scientists. It follows that
learning processes, whatever their particular concerns and fashions at any given point in
time, are necessarily reasoning processes which take place in the minds of individuals. To
be sure, the object of attention and interest may well be an assumed external, objective
reality: but the actuality of the learning process consists in the evolution of individual,
subjective beliefs about that reality. However, it is important to emphasize . . . that
the primitive and fundamental notions of individual preference and belief will typically
provide the starting point for interpersonal communication and reporting processes. . . .
[W]e shall therefore often be concerned to identify and examine features of the individual
learning process which relate to interpersonal issues, such as the conditions under which
an approximate consensus of beliefs might occur in a population of individuals.

The quantum de Finetti theorem provides a case in point for how much agreement a population
can come to from within quantum mechanics.

One is left with a feeling—an almost salty feeling—that perhaps this is the whole point of the
structure of quantum mechanics. Perhaps the missing ingredient for narrowing the structure of
Bayesian probability down to quantum mechanics has been in front of us all along. It finds no
better expression than in taking account of the challenges the physical world poses to our coming
to agreement.

10 The Oyster and the Quantum

The significance of this development is to give us insight
into the logical possibility of a new and wider pattern of
thought. This takes into account the observer, including
the apparatus used by him, differently from the way it was
done in classical physics . . . In the new pattern of thought
we do not assume any longer the detached observer, oc-
curring in the idealizations of this classical type of theory,
but an observer who by his indeterminable effects creates
a new situation, theoretically described as a new state of
the observed system. . . . In this way every observation is
a singling out of a particular factual result, here and now,
from the theoretical possibilities, thereby making obvious
the discontinuous aspect of the physical phenomena.

Nevertheless, there remains still in the new kind of the-
ory an objective reality, inasmuch as these theories deny
any possibility for the observer to influence the results of a
measurement, once the experimental arrangement is cho-
sen. Particular qualities of an individual observer do not
enter the conceptual framework of the theory.

— Wolfgang Pauli, 1954
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A grain of sand falls into the shell of an oyster and the result is a pearl. The oyster’s sensitivity
to the touch is the source a beautiful gem. In the 75 years that have passed since the founding
of quantum mechanics, only the last 10 have turned to a view and an attitude that may finally
reveal the essence of the theory. The quantum world is sensitive to the touch, and that may be
one of the best things about it. Quantum information—with its three specializations of quantum
information theory, quantum cryptography, and quantum computing—leads the way in telling
us how to quantify that idea. Quantum algorithms can be exponentially faster than classical
algorithms. Secret keys can be encoded into physical systems in such a way as to reveal whether
information has been gathered about them. The list of triumphs keeps growing.

The key to so much of this has been simply in a change of attitude. This can be seen by going
back to almost any older textbook on quantum mechanics: Nine times out of ten, the Heisenberg
uncertainty relation is presented in a way that conveys the feeling that we have been short-changed
by the physical world.

“Look at classical physics, how nice it is: We can measure a particle’s position and momentum
with as much accuracy as we would like. How limiting quantum theory is instead. We are stuck
with

∆x∆p ≥ 1
2
h̄ ,

and there is nothing we can do about it. The task of physics is to sober up to this state of
affairs and make the best of it.”

How this contrasts with the point of departure of quantum information! There the task is not to
ask what limits quantum mechanics places upon us, but what novel, productive things we can do
in the quantum world that we could not have done otherwise. In what ways is the quantum world
fantastically better than the classical one?

If one is looking for something “real” in quantum theory, what more direct tack could one
take than to look to its technologies? People may argue about the objective reality of the wave
function ad infinitum, but few would argue about the existence of quantum cryptography as a solid
prediction of the theory. Why not take that or a similar effect as the grounding for what quantum
mechanics is trying to tell us about nature?

Let us try to give this imprecise set of thoughts some shape by reexpressing quantum cryptog-
raphy in the language built up in the previous sections. For quantum key distribution it is essential
to be able to prepare a physical system in one or another quantum state drawn from some fixed
nonorthogonal set [102, 107]. These nonorthogonal states are used to encode a potentially secret
cryptographic key to be shared between the sender and receiver. The information an eavesdrop-
per seeks is about which quantum state was actually prepared in each individual transmission.
What is novel here is that the encoding of the proposed key into nonorthogonal states forces the
information-gathering process to induce a disturbance to the overall set of states. That is, the pres-
ence of an active eavesdropper transforms the initial pure states into a set of mixed states or, at the
very least, into a set of pure states with larger overlaps than before. This action ultimately boils
down to a loss of predictability for the sender over the outcomes of the receiver’s measurements
and, so, is directly detectable by the receiver (who reveals some of those outcomes for the sender’s
inspection). More importantly, there is a direct connection between the statistical information
gained by an eavesdropper and the consequent disturbance she must induce to the quantum states
in the process. As the information gathered goes up, the necessary disturbance also goes up in a
precisely formalizable way [108, 109].

Note the two ingredients that appear in this scenario. First, the information gathering or
measurement is grounded with respect to one observer (in this case, the eavesdropper), while the
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disturbance is grounded with respect to another (here, the sender). In particular, the disturbance
is a disturbance to the sender’s previous information—this is measured by her diminished ability
to predict the outcomes of certain measurements the legitimate receiver might perform. No hint of
any variable intrinsic to the system is made use of in this formulation of the idea of “measurement
causing disturbance.”

The second ingredient is that one must consider at least two possible nonorthogonal preparations
in order for the formulation to have any meaning. This is because the information gathering is
not about some classically-defined observable—i.e., about some unknown hidden variable or reality
intrinsic to the system—but is instead about which of the unknown states the sender actually
prepared. The lesson is this: Forget about the unknown preparation, and the random outcome of
the quantum measurement is information about nothing. It is simply “quantum noise” with no
connection to any preexisting variable.

How crucial is this second ingredient—that is, that there be at least two nonorthogonal states
within the set under consideration? We can address its necessity by making a shift in the account
above: One might say that the eavesdropper’s goal is not so much to uncover the identity of the un-
known quantum state, but to sharpen her predictability over the receiver’s measurement outcomes.
In fact, she would like to do this at the same time as disturbing the sender’s predictions as little
as possible. Changing the language still further to the terminology of Section 4, the eavesdropper’s
actions serve to sharpen her information about the potential consequences of the receiver’s further
interventions on the system. (Again, she would like to do this while minimally diminishing the
sender’s previous information about those same consequences.) In the cryptographic context, a
byproduct of this effort is that the eavesdropper ultimately comes to a more sound prediction of
the secret key. From the present point of view, however, the importance of this change of language
is that it leads to an almost Bayesian perspective on the information–disturbance problem.

As previously emphasized, within Bayesian probability the most significant theme is to identify
the conditions under which a set of decision-making agents can come to a common probability
assignment for some random variable in spite of the fact that their initial probabilities differ [77].
One might similarly view the process of quantum eavesdropping. The sender and the eavesdropper
start off initially with differing quantum state assignments for a single physical system. In this
case it so happens that the sender can make sharper predictions than the eavesdropper about
the outcomes of the receiver’s measurements. The eavesdropper, not satisfied with this situation,
performs a measurement on the system in an attempt to sharpen those predictions. In particular,
there is an attempt to come into something of an agreement with the sender but without revealing
the outcomes of her measurements or, indeed, her very presence.

It is at this point that a distinct property of the quantum world makes itself known. The
eavesdropper’s attempt to surreptitiously come into alignment with the sender’s predictability is
always shunted away from its goal. This shunting of various observer’s predictability is the subtle
manner in which the quantum world is sensitive to our experimental interventions.

And maybe this is our crucial hint! The wedge that drives a distinction between Bayesian
probability theory in general and quantum mechanics in particular is perhaps nothing more than
this “Zing!” of a quantum system that is manifested when an agent interacts with it. It is this
wild sensitivity to the touch that keeps our information and beliefs from ever coming into too great
of an alignment. The most our beliefs about the potential consequences of our interventions on
a system can come into alignment is captured by the mathematical structure of a pure quantum
state |ψ〉. Take all possible information-disturbance curves for a quantum system, tie them into a
bundle, and that is the long-awaited property, the input we have been looking for from nature. Or,
at least, that is the speculation.
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10.1 Give Us a Little Reality

What we need here is a little Realitty.
— Herbert Bernstein, circa 1997

In the previous version of this paper [1] I ended the discussion just at this point with the following
words, “Look at that bundle long and hard and we might just find that it stays together without
the help of our tie.” But I imagine that wispy command was singularly unhelpful to anyone who
wanted to pursue the program further.

How might one hope to mathematize the bundle of all possible information-disturbance curves
for a system? If it can be done at all, the effort will have to end up depending upon a single real
parameter—the dimension of the system’s Hilbert space. As a safety check, let us ask ourselves
right at the outset whether this is a tenable possibility? Or will Hilbert-space dimension go the
wayside of subjectivity, just as we saw so many of the other terms in the theory go? I think the
answer will be in the negative: Hilbert-space dimension will survive to be a stand-alone concept
with no need of an agent for its definition.

The simplest check perhaps is to pose the same Einsteinian test for it as we did first for the
quantum state and then for quantum time evolutions. Posit a bipartite system with Hilbert spaces
HD1

and HD2
(with dimensions D1 and D2 respectively) and imagine an initial quantum state for

that bipartite system. As argued too many times already, the quantum state must be a subjective
component in the theory because the theory allows localized measurements on the D1 system to
change the quantum state for the D2 system. In contrast, is there anything one can do at the D1

site to change the numerical value of D2? It does not appear so. Indeed, the only way to change
that number is to scrap the initial supposition. Thus, to that extent, one has every right to call
the numbers D1 and D2 potential “elements of reality.”

It may not look like much, but it is a start.44 And one should not belittle the power of a good
hint, no matter how small.45

11 Appendix: Changes Made Since quant-ph/0106166 Version

Beside overhauling the Introduction so as to make it more relevant to the present meeting, I
made the following more substantive changes to the old version:

1. I made the language slightly less flowery throughout.

2. Some of the jokes are now explained for the readers who thought they were typographical
errors.

3. For the purpose of Section 1’s imagery, I labeled the followers of the Spontaneous Collapse
and Many-Worlds interpretations, Spontaneous Collapseans and Everettics—in contrast to
the previous terms Spontaneous Collapsicans and Everettistas—to better emphasize their
religious aspects.

4. Some figures were removed from the quantum de Finetti section and the dramatis personae
on page 2 was added.

5. I now denote the outcomes of a general POVM by the index d to evoke the image that all (and
only) a quantum measurement ever does is gather a piece of data by which we update our
subjective probabilities for something else. It causes us to change our subjective probability

44Cf. also Ref. [110].
45Cf. also the final paragraphs of Section 1.
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assignments P (h) for some hypothesis h to a posterior assignment Pd(h) conditioned on the
data d.

6. As noted in Footnote 9, this paper is a bit of a transitionary one for me in that, since writing
quant-ph/0106166, I have become much more convinced of the consistency and value of the
“radically” subjective Bayesian paradigm for probability theory. That is, I have become much
more inclined to the view of Bruno de Finetti [104], say, than that of Edwin Jaynes [111]. To
that end, I have stopped calling probability distributions “states of knowledge” and been
more true to the conception that they are “states of belief” whose cash-value is determined
by the way an agent will gamble in light of them. That is, a probability distribution, once it
is written down, is very literally a gambling commitment the writer of it uses with respect to
the phenomenon he is describing. It is not clear to what extent this adoption of terminology
will cause obfuscation rather than clarity in the present paper; it was certainly not needed
for many of the discussions. Still I could not stand to propagate my older view any further.

7. In general, 23 footnotes, 38 equations, and over 43 references have been added. There are
five new historical quotes starting the sections, and the ghostly quote of Section 9 has been
modified for greater accuracy.

8. The metaphor ending Section 1, describing how the grail of the present quantum foundations
program can be likened to the spacetime manifold of general relativity, is new.

9. Section 2 has been expanded to be consistent with the rest of the paper. Also, there are three
important explanatory footnotes to be found there.

10. Einstein’s letter to Michele Besso in Section 3 is now quoted in full.

11. Section 4.1, which argues more strongly for Gleason’s noncontextuality assumption than
previously, is new.

12. Section 4.2, which explains informationally complete POVMs and uses them to imagine a
“standard quantum measurement” at the Bureau of Weights and Measures, is new.

13. To elaborate the connection between entanglement and the standard probability rule, I
switched the order of presentation of the “Whither Bayes Rule?” and “Wither Entangle-
ment?” sections.

14. The technical mistake that was in Section 5 is now deleted. The upshot of the old argument,
however, remains: The tensor-product rule for combining quantum systems can be thought
of as secondary to the structure of local observables.

15. A much greater elaboration of the “classical measurement problem”—i.e., the mystery of
physical cause of Bayesian conditionalization upon the acquisition of new information (or the
lack of a mystery thereof)—is now given in Section 6.

16. Section 6.1, wherein a more detailed description of the relation between real-world measure-
ments and the hypothetical standard quantum measurement is fleshed out, is new.

17. Section 7, which argues for the nonreality of the Hamiltonian and the necessary subjectivity
of the ascription of a POVM to a measurement device, is new.

18. Section 8, wherein I find a way to use the word bloodbath, is new.

19. The long quote in Section 9 by Bernardo and Smith, which describes what Bayesian probabil-
ity theory strives for, is new. Here’s another good quote of theirs that didn’t fit in anywhere
else:

What is the nature and scope of Bayesian Statistics within this spectrum of
activity?

52



Bayesian Statistics offers a rationalist theory of personalistic beliefs in contexts
of uncertainty, with the central aim of characterising how an individual should
act in order to avoid certain kinds of undesirable behavioural inconsistencies. The
theory establishes that expected utility maximization provides the basis for rational
decision making and that Bayes’ theorem provides the key to the ways in which
beliefs should fit together in the light of changing evidence. The goal, in effect, is to
establish rules and procedures for individuals concerned with disciplined uncertainty
accounting. The theory is not descriptive, in the sense of claiming to model actual
behaviour. Rather, it is prescriptive, in the sense of saying “if you wish to avoid the
possibility of these undesirable consequences you must act in the following way.”

20. Section 10.1, which argues for the nonsubjectivity of Hilbert-space dimension, is new.

21. One can read about the term “Realitty” in Ref. [112].
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