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1 Outline

My research is concerned with a fundamental question: what types of collective be-
havior are possible in a quantum many-body system? Traditionally, condensed matter
theorists have wanted to explain phenomena like magnetism or superconductivity in
quantum materials. A new point of view is that all that is important in physics is
some kind of collective behavior. This means that also the laws that describe com-
putation, or quantum fields, or black hole physics, to name a few, are emergent from
the collective behavior of a quantum many-body system.

Some of the questions that I have been asking myself in this spirit are the following:
What kind of memory is possible in a quantum many-body system? Does it have
to be classical, or can it be quantum? What kind of organization makes quantum
memory possible? Are the maximum speed of signals and Lorentz symmetries emer-
gent phenomena? How can we characterize and classify Topological Order? How can
thermalization emerge in a closed quantum system?

On the more traditional side, I have been working on developing methods to study
Quantum Phase Transitions, the study of Decoherence in spin systems, and the prob-
lem of Adiabatic Continuity in many-body systems.

My research combines condensed matter physics, quantum information theory, and
mathematical physics.

2 Past Accomplishments

2.1 Topological phases and Entanglement

Since my doctoral studies, I have become fascinated with novel quantum phases
of matter, like Topologically Ordered states, like fractional quantum Hall (FQH)
liquids or quantum double models. These phases cannot be described in terms of
local order parameters and breaking of symmetry [1]. This means that topological
states can be found in different phases without a change of symmetry. We were
used to the fact that symmetry was the only relevant concept to describe phases of
matter. In some sense, normal phases of the matter are classical, in that they can be
described by states that are a product state in the local degrees of freedom. On the
other hand, topological phases cannot be described by product states, but they are
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Figure 1: The transition between a normal disordered phase and a topologically
ordered phase. The topological entropy is constant Si,, = 1 in the topologically
ordered phase 7 > .74 and it is thus a universal property of the phase.

always entangled. During my doctorate, I did the first calculation of entanglement
in a topologically ordered state [26], namely the toric code model [4]. It turns out
that topological phases can be characterized by patterns of long-range entanglement
26, 25, 23, 10, 7] resulting in subleading universal corrections in the entanglement
entropy. To what extent entanglement (and entanglement spectrum) can classify
topological order was discussed in [7].

Following up on these works, it was shown that indeed such topological entropy can
distinguish all topologically ordered states from normal states of the matter [4, 6].
The numerical analysis of [20], showed that topological entropy is indeed a universal
quantity labeling the topological phase, see Fig.1. In [19], I have shown how the fidelity
metric approach, i.e., a measure of the susceptibility of the change of the ground state
wavefunction under a small change in the parameters of the Hamiltonian, is effective
to obtain phase diagrams of topological ordered systems and to extract universal
properties of the quantum critical point.

One of the most important problems in the study of topological phases is that of their
stability in presence of disorder and at finite temperature. If topological order is lost at
any finite temperature it would mean that there is no way to experimentally detect
it. As usual, dimensionality plays an important role for the existence of a critical
temperature. The only known example with a critical temperature was the toric code
in 4D, until in [13] I showed the first example of thermally robust topological order
in less than four dimensions.
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2.2 Entanglement, thermalization, and quantum memory

Out of equilibrium quantum many-body systems will relax to a steady state when
interacting with an environment, just like classical systems. Relaxation consists in
some leakage of information from the system to the environment. So while classical
states leak classical information, quantum states leak quantum information encoded
in the phase relations of the wavefunction. Being so much richer, they also have
much more to lose in the process of relaxation. The decoherence process towards
the environment is an extremely fast process that is responsible for the appearance
of the classical world. The approach to equilibrium of quantum many body systems
is of great importance for manifold reasons: (2.2.1) practical applications to quan-
tum information processing, (2.2.2) understanding of quantum phases, and (2.2.3)
foundations of quantum statistical mechanics.

2.2.1 Quantum information processing

Storing classical information, using magnetic, mechanical and optical devices, is key
to much of everyday lifes technology. These “classical memories” function on the
basis that the time scale needed to degrade the information scales with the system
size, so in practice memory lasts ‘forever’ even for fairly miniaturized devices.

One of the problems in harvesting the power of quantum information processing is
how to realize a stable quantum memory. In [13], T have addressed this question in
the case of topologically ordered systems, where information is stored collectively in a
many-body state, and only the motion of thermal defects across distances comparable
to the system size degrades the information. A stable topological quantum memory
can be achieved by appropriately coupling the defects to acoustic waves. They ac-
quire an effective attractive interaction akin to two-dimensional gravity. Below some
temperature the system undergoes a gravitational collapse, and the time scale for
defects to travel across the system becomes polynomial in system size. This work has
been selected as Editor’s choice in Physical Review B.

Another route for a stable quantum memory, is the existence of decoherence free sub-
spaces, subspaces of the Hilbert space in which the evolution is decoupled by that of
the environment. Unfortunately, such subspaces are unstable. By studying the entan-
glement dynamics for an open system, I discovered that there are also approximate
decoherence free subspaces which can be more robust and viable for experimental
implementation [17].
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2.2.2 Quantum systems away from equilibrium

The understanding of the non-equilibrium behavior of a quantum system is crucial to
understand the universal properties of a many-body ground state wavefunction. This
scenario is investigated in the setting of the quatum quench, namely a sudden change
of the interaction Hamiltonian. In [28], I showed that the mechanism of revivals after
a quantum quench is governed by the maximum speed of quasi particles in the system.
I studied the quantum quench of topological order in [8]. When looking at some
local observables, one can see local thermalization, but non vanishing topological
entropy. The work in [8] is mainly numerical and this limits the results to very
small systems. In my current research, I am working on finding analytical results
for the quantum quench of topological order. We conjecture that topological order is
preserved during the evolution in the sense that the topological entropy is conserved
during the evolution. This implies that although macroscopic (local) observables will
thermalize, there are topological quantities which retain memory of the initial state
of the system: this would constitute an example of quantum glass and open the way
to the study of novel quantum materials.

2.2.3 Foundations of Statistical Mechanics

In the past few years, there has been a strong revival of the interest in the foundations
of quantum statistical mechanics. The seminal work of [14] has shown that for a
large quantum system that is evolving unitarily, a small part of the system is relaxing
towards thermal equilibrium as an effect of the entanglement between the reduced
system and the rest. This happens because typical entanglement is almost maximal.
The problem with this approach is that random states are not physical because they
are not accessible in nature. One needs a doubly exponential time in the size of the
system to obtain the statistics of random states. Physical states, are those obtained
by evolution with a local Hamiltonian for a reasonable amount of time, namely a time
scaling with the size of the system. If physical states are not typical, can they still
have typical entanglement? We need to answer this question to know whether we
can justify the quantum approach to the foundations of statistical mechanics. This
was a question that haunted me and I felt that there was something important at
stake until we could answer it. Recently, in [12] I showed that entanglement in such
physical states is also typical, featuring a volume law. In this sense, we can say that
the quantum approach gives firm grounds to the foundations of statistical mechanics.
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2.3 Emergence of Lorentz Symmetry and Analogues of Black
Hole Physics

The beauty of condensed matter physics is that, with the words of Phil Anderson,
“more is different”. Collective behavior of many-body systems can feature properties
that are not properties of its elementary constituents. Moreover, the microscopic
physics can be messy and ugly, but the emergent behavior beautiful and elegant
from the mathematical point of view. A beautiful line of research is to show that
a condensed matter system can feature excitations that behave just like elementary
particles. For instance, fermions can emerge from topological order. The mecha-
nism that creates topological order is that of the condensation of extended objects
like closed strings and membranes. Such systems feature excitations made by the
boundary of open strings and membranes that can behave like fermions [1, 24].

In his seminal work [11], X.-G. Wen showed that light can emerge in a system of
screened dipoles. Thinking that photons are not elementary particles but collective
modes of an underlying condensed matter system is a point of view rich of conse-
quences. In my work [16], I have shown that in such system the speed of light s the
maximum possible speed of signals. What one usually imposes as postulate, is here
emergent. We have an emergent Lorentz symmetry. The result was obtained using
the powerful machinery of the Lieb-Robinson bounds.

In the view of the principle of emergence, even gravity could be viewed as an emergent
phenomenon. One could take the emergent point of view very seriously and think
that the notion itself of locality and manifold can emerge from a condensed matter
system. Recently, I have showed a Bose-Hubbard model where the particles do not
hop on a fixed graph, but the graph itself is made of quantum degrees of freedom that
interact with the particles [2, 3]. Moreover, also black hole physics can emerge from
such many body toy models. From the condensed matter point of view, this Hubbard
model with evolving graph contains a rich phase diagram, whose investigation will be
the object of future research.

2.4 Quantum Phase Transitions, the Adiabatic Theorem, Lieb
Robinson bounds and other topics

One of my interests of research is the use of novel tools to investigate universal prop-
erties of quantum critical points. I have been very interested in understanding how
the critical points are revealed by geometric properties of the Hilbert space. In [22], I
have shown that quantum critical points correspond to topological properties of the
Berry phase and divergences in the adiabatic curvature. This work has influenced a
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series of highly cited works in which phase boundaries and quantum critical points are
described by a differential geometric setup [18]. This approach can be used to obtain
quantum speed-ups in the adiabatic preparation of quantum states or in protocols of
adiabatic quantum computation, as I showed in [9], in which the problem of finding
the fastest adiabatic path in the parameter space is mapped into a geodesic problem,
see Fig.2.

The concept of adiabatic continuity to define the concept of phase goes to P. An-
derson. In order to use such concept rigorously, one needs versions of adiabatic
theorems that are suited for a system with a scaling number of degrees of freedom.
I contributed to this topic with my paper [15] on the adiabatic theorem for many
body systems. Moreover, using the adiabatic theorem, I showed an optimal way of
preparing topologically ordered states [21].

The celebrated Lieb-Robinson bounds are one of the most powerful tools to study
the correlations in quantum many body systems. These bounds mean that if a many
body system is ruled by a local Hamiltonian, all the physics has local properties,
even if we do not impose a relativistic structure, like in ordinary quantum mechanics.
Thanks to this technique, it has been possible to prove the exponential decay of
correlations in gapped systems and the stability of the gap in topologically ordered
systems. Unfortunately, the Lieb-Robinson bounds are only valid in finite dimensional
systems. In [27], I have proven a new theorem that extends the Lieb-Robinson result
to a class of commutator bounded systems in an infinite-dimensional Hilbert space.
Recently, I have been studying QPTs in some one dimensional models, to understand
phenomena like symmetry protection of topological order and factorization [29].

~_ ‘f/
10 1.0

Figure 2: The curvature defined by the adiabatic condition and the geodesic path
QAB that minimizes the time of a computation
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3 Future Work

In the immediate future, I intend to expand some of the research lines that I described
above:

¢ Entanglement and Thermalization in physical states

There are many things to do. First and foremost, we need to implement energy
constraints in the ensemble of physical states so to prove that the reduced system
is typically a thermal state. This result would somehow complete the program
of giving solid foundations to quantum statistical mechanics. I am currently
also computing the converge rate to thermalization by means of gap analysis.
An intriguing possibility is to use this formalism to prove that black holes are
fast scramblers of information and thus the generality of certain aspects of black
hole physics. Third, we need to be able to compute the von Neumann entropy.
I am thrilled by the possibility of using this formalism to study the stability
of topological phases. Since this formalism depends explicitly on the graph on
which the system is defined, I think that it is just natural to inquire how we
can use these tools to obtain graph-theoretic results.

e Stability and Characterization of Topological Phases

In my view, these are some of the most intriguing open problems in theoretical
condensed matter. How do we know whether topological states are really stable?
Are their amazing features really the properties of a whole phase? Is topolog-
ical entropy stable against perturbations and finite temperature? What is the
relationship between the lifetime of quantum memory and topological entropy?
What is the correct mathematical description for topological metastable states?
Is the thermodynamic limit adequate to describe topological order? Can the
behavior away from equilibrium serve to characterize topological phases? My
current effort is in the investigation of these questions, and will certainly cover
at least a couple of years (if not more, new questions arise all the time!).

e Emergence of Symmetries As we have seen [16], the Lieb-Robinson bound
imply that models with emergent light force its speed to be the maximum
speed of signals. This is a strong argument in favor of the emergence of Lorentz
symmetry. In order to be a truly emergent phenomenon, this speed limit must
universal and robust against perturbations. I want to show that the universality
of the limit speed is protected at low energies by the same topological mechanism
that protects the emergent photon.
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In the so not immediate future, well, it is always difficult to say. But together with
strongly correlated quantum systems, in the long term I would also like to understand
complex systems like complex networks, macroeconomics, and biological systems.

e The classical version of the toy model of [2] can be used to describe the evo-
lution of complex network like the world wide web. Moreover, the study of
entanglement in physical states captures some of the graph theoretic structure
underlying a local model. In the future, I am definitely going to spend more
time in this line of research.

e Perhaps one of my greatest interests outside physics is economics. I have al-
ways been unsatisfied with the agent based models that try to describe economic
behavior. We are not able to find out the behavior of materials from first prin-
ciples, let alone behavior of human masses, which is far from being rational!
Nevertheless, I believe that some tools of theoretical physics can still be used
to gain insight in the economic behavior, like ideas coming from the renormal-
ization group. Economic or social behavior have some intrinsic robustness (or
criticality) that come from the fact that there is an underlying principle of or-
ganization. Stability of money, for instance, perhaps is the stability of a phase.
I am looking forward to devoting part of my research to this topic.
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