The quantum mechanics lectures have been divided into 17 modules, listed below, each with a title and a brief description of its content. It is recommended that these be viewed in the order listed, as each module builds on concepts introduced in previous modules. Clicking on the titles will reveal an active link to the recorded lecture segment that includes a list of key learning outcomes.

## QM-1: Experimental Introduction to Quantum Mechanics

A discussion of the surprising results of the single slit and double slit experiments

## QM-2: The de Broglie Relationship

Making the connection between particle probability patterns and wave intensity patterns, leading to the famous de Broglie relationship.

## QM-3: Particle in a Box

Using the de Broglie relation as our foundation for understanding the quirky quantum behaviour of particles.

## QM-4: OR vs. AND

Highlighting the essential difference between the classical and quantum worlds.

## QM-5: The Heisenberg Uncertainty Principle

A discussion of the Heisenberg Uncertainty Principle as another way to understand quantum weirdness.

## QM-6: The Strong and Weak Interpretations of Heisenberg Uncertainty Principle

A more in depth discussion of what the Heisenberg Uncertainty Principle is trying to tell us about the nature of reality.

## QM-7: The Quantum Harmonic Oscillator

Taking our intuitive understanding of the quantum world gained by studying a particle in a one-dimensional box, we generalize to understand a quantum harmonic oscillator.

## QM-8: What is a Photon?

By applying our understanding of the quantum harmonic oscillator to the electromagnetic field we learn what a photon is, and are introduced to “quantum field theory” and the amazing “Casimir effect."

## QM-9: Zero Point Energy

Understanding the zero point energy of the quantum harmonic oscillator as a consequence of the Heisenberg Uncertainty Principle.

## QM-10: Stability of the Atom

A discussion of how the zero point energy of atoms is what makes possible their existence in our universe – atoms are purely quantum mechanical objects.

## QM-11: De Broglie Waves Are Complex

The de Broglie waves we have been using thus far were assumed to be real functions; we discuss why this is wrong and how to fix the problem.

## QM-12: How Atoms Emit and Absorb Photons

We go way beyond the Bohr model of the atom to learn exactly how atoms make transitions between energy levels – the physical mechanism of photon emission and absorption.

## QM-13: Schrodinger Wave Equation

A “derivation” of the Schrodinger wave equation based on simple calculus.

## QM-14: The Physics of Electron Spin

An experimental introduction to electron spin.

## QM-15: The Mathematics of Electron Spin

Development of a successful mathematical model of spin.

## QM-16: The Quantum Nature of the Electron: Superposition and Entanglement

A demonstration of electron superposition using an electron diffraction apparatus, plus an introduction to quantum entanglement.

## QM-17: Quantum Teleportation – A Love Story

Quantum teleportation as a fascinating application of quantum entanglement

## About the Lecturer

Richard Epp has a Masters degree in electrical engineering and a PhD degree in theoretical physics from the University of Manitoba, Canada, and has held postdoctoral research positions around the world working in general relativity: Einstein's theory of space, time and gravity. With both an engineering and a theoretical physics background, Dr. Epp is knowledgeable and enthusiastic about the entire spectrum of physics, from curiosity-driven research in quantum gravity to the applied physics of how a cell phone works. He has extensive outreach experience, having originated many of PI's outreach initiatives - including the ISSYP - and immensely enjoys introducing people of all ages to the mysteries and wonders of our amazing universe.