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Introduction

 The ability to quantify information and uncertainty using entropies 
has proved very valuable in understanding quantum and classical 
theory, and their information-processing capabilities. 

 Can the notion of entropy be extended to other probabilistic 
theories?

 AJS, S. Wehner, New J. Phys. 12 03302 (2010)

 H. Barnum, J. Barrett, L.O. Clark, M. Leifer, R. Spekkens,                 
N. Stepanik, A. Wilce and R. Wilke, New J. Phys. 12 033024 (2010)

 G. Kimura, K. Nuida, H. Imai, Rep. Math. Phys. 66, 175 (2010)



General probabilistic theories

 We consider  a general probabilistic framework for physical theories 
based on operational notions  (as in many previous works...). 

 The framework we use is more general than some, as we do not
assume 

 That all mathematically possible measurements/transformations 
are implementable

 That composite systems can be completely characterised by local 
measurements. (i.e. Local tomography)  



Overview of framework (not including lots of details) 

 Each system (or collection of systems) has a set of allowed states S

 Any mixture can be prepared, and is represented by 

hence state sets are convex 

 If we independently prepare system A in state sA and system B in 
state sB, we generate a well-defined product state of the 
composite AB denoted by sA sB

 States are separable if they are equal to a mixture of product 
states and entangled otherwise. 
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 For each system, there is some set of allowed measurements E

 Each measurement e has a finite set of outcomes

 Each outcome r is associated with an affine effect er: S [0,1] 
such that er(s) is the probability  of obtaining result  r on state s. 

 The sum over all effects in a measurement is the unit effect u
satisfying u(s)=1 for all states. 

 We assume that we can independently measure two systems to 
perform a well-defined product measurement  eA eB
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 If one measurement gives strictly more information than another 
we call it a refinement

(e.g. {e1, e2} -> {e1, e2a , e2b} where  e2a+ e2b=e2 and e2a  c e2b). 

 We call a measurement fine-grained if it has no refinement. 

 The set of fine-grained measurements is denoted by E*E

 We assume that E* is non-empty. 

 Similarly, if one measurement gives strictly less information than 
another we call it a coarse-graining.

 We assume that E is closed under coarse graining. 

 For clarity, when dealing with entropies of states we will 
sometimes write H(sA) as H(A), H(sAB) as H(AB), etc.  



Examples

 Classical probability theory

 States are finite probability vectors pi

 Effects are er(s)=i qr
i pi for qr

i[0,1]

 Quantum theory

 States  are finite-dimensional trace 1 positive operators 

 Effects are er(s)=tr(Er ) for 0 Er  I

 Fine-grained measurements are POVMs with rank 1 elements. 

 Restricted quantum/classical theories

 some subset of allowed states / measurements 

 Real quantum theory 



Box world

 A generalised probabilistic theory that has received a lot of 
attention is box-world , previously called `Generalised Non-
Signallling Theory’ *J. Barrett (2005)+. 

 The state of a single system is given by a conditional probability 
distribution  P(a|x).   All such distributions are allowed states. 

 Intuitively, x represents an input (a choice of measurement) 
and a an output (the measurement result). 

 Different types of system have different finite input and 
output sets x

a



 Multipartite states are represented by joint conditional probability 
distributions  P(a1 a2 ... an|x1 x2 ...  xn). 

 All distributions satisfying the no-signalling condition are 
allowed states. 

 An important state in box-world is the entangled PR-box state  
[S. Popescu, D. Rohrlich(1994)] where a,b,x,y are binary
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 In box world all mathematically well-defined measurements and 
transformations are allowed.  

 The allowed measurements E include `putting an input x in the 
box, and obtaining result a’, but also mixtures of these things. 

 On bipartite systems all measurements can be performed only  
using the box inputs and outputs. E.g. 

 However there exist non-trivial tri-partite measurements, that 
cannot be performed in this way. [AJS, J.Barrett (2010)]
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Generalised entropy

 Our aim is to define an entropy that is meaningful for any 
operational theory, yet reduces to the Shannon and Von-Neumann 
entropy in classical and quantum theory. 

 The more properties of the usual entropy that our definition 
maintains, the better.  

 To preserve the valuable intuitions we have developed

 To allow the possibility of lifting proofs from the quantum to the 
general case



 Many definitions are possible, and we will consider another natural 
alternative later (the decomposition entropy) 

 However, a good definition is :

 Hc is the classical Shannon entropy

 Intuitively, H(s) is the minimal  outcome uncertainty for any fine 
grained measurement on the system. 
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Properties of H(s)

1) Reduction:   Crucially, H(s) reduces to the von-Neumann entropy in 
quantum theory, and the Shannon entropy in classical theory

 In the quantum case, the optimal fine-grained measurement is  
a projective measurement in the eigenbasis of .   

2) Positivity and Finiteness: let d be the minimal number of 
outcomes of a fine grained measurement. Then it is easy to see 
that
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3) Concavity:

Proof:  Suppose the infimum is attained for eE*, then 

 Two additional properties hold with weak additional assumptions. 
In particular, they hold in classical theory, quantum theory and box-
world  
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4)  (Limited) Subadditivity: Suppose that a product of two fine 
grained measurements is also fine-grained. That is

then

5) (Limited) Continuity: Suppose that for a given system, restricting 
E* to measurements with a bounded number of outcomes does 
not change the entropy. Then the entropy is continuous on states  
with the natural distance measure (distinguishability using E)
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(Limited) Coding theorem

 Ideally , we would like an operational understanding of our entropy 
in terms of data compression

 With additional (relatively strong) assumptions, which hold in 
quantum and classical theory, we can prove such a result - that the 
entropy gives an achievable `compression’ rate.

 In particular, we assume that all relevant measurements are

 Repeatable  - Repeating the measurement yields the same 
result

 Weakly disturbing - If a measurement result is almost certain to 
occur, obtaining that result doesn’t change the state much.



Other entropic quantities

 Given H(s), we can also define other entropic quantities 
analogously to the quantum case

 Conditional entropy:  

 Mutual Information:

 However, these do not maintain their intuitive properties as nicely 
as the  entropy itself. For example, the conditional entropy is not 
subadditive in box-world. 

)()()|( BHABHBAH 

)()()():( ABHBHAHBAI 



Decomposition entropy

 There are many alternative definitions of the entropy which we 
could have chosen. One example is the decomposition entropy 
HD(s), which measures the mixedness of a state

 Denote the extreme points of S by S*. Call these pure states, with 
all other states being mixed. The decomposition entropy of s is the 
minimal Shannon entropy of the probability distribution over pure 
states, for all pure state decompositions of s 
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 Like H(s), it can be proved that HD(s) reduces to the von-Neumann 
and Shannon entropy in classical and quantum theory respectively. 

 The fact that these two conceptually different entropies are the 
same in quantum theory is intriguing  (Barnum et al.)

 However, examples from box world illustrate that HD(s) is neither 
concave or subadditive in general.

 HD(s) also has a number of other counterintuitive properties in box 
world. E.g. 

 The decomposition entropy of a maximally random binary-
input/output box is 1. 

 However, the decomposition entropy of two random boxes is 
also 1  (as they are an equal mixture of PR and anti-PR).



Information causality

 A useful arena in which to try out our generalised entropy is 
information causality [Pawlowski et al, Nature 461, 1101 (2009)]
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 Information causality is respected by quantum and classical theory, 
but violated in box-world.  

 In particular, for the case in which N=2 and m=1, using a single PR-
box state, Bob can perfectly discover whichever of Alice’s bits is 
requested, achieving 

 The proof of information causality depends on manipulating the 
quantum mutual information. 

 By following the same steps using our generalised mutual 
information, we can see where the proof fails for box world. 
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 The failure actually happens for the state after Alice has sent the 
message a, which is separable

 The next step of the proof uses the data processing inequality to 
deduce that  
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 However, this relation does not hold in box world. Indeed, for the 
state given it is easy to compute that 

 Applying our usual intuitions about the mutual information, this 
would suggest that `forgetting’ x1 gives more information about  x0

 This shows that our general entropy does not satisfy strong 
subadditivity in box world 
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 Interestingly, given any theory which includes classical systems 
(and some natural transformations), information causality will hold 
if there exists any entropy function HT(s) for states in that theory 
satisfying 

i) Classical reduction:  HT(s)=Hc(s) when s is a classical system

ii) Data processing: For any joint system AB, and any 
transformation on A 

(this is equivalent to I(A:B)  I(T[A]:B), and is satisfied by the 
Shannon and von Neumann entropy)
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 The fact that quantum theory admits an entropy which shares 
many of the powerful properties of the Shannon entropy is 
surprising, and may be very special in the set of theories.  

 Information Causality seems to be a consequence of this. 

 Can we find other interesting tasks for which there is a classical 
entropic bound, and see if they hold in quantum theory but not in 
general?

 Entropies are strange non-linear functions

 Surprisingly however, Information causality can be used to 
derive part of the boundary of the set of quantum correlations 
[Pawlowski et al, and Allcock et al (2009)]. How?



Information causality as a non-local game

 The proof of Tsirelson’s bound from information causality involves 
only 1 bit of communication, which is added to Bob’s guess (mod 2). 
Hence we can think of it as a non-local game.   
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 For non-local games, the normal figure of merit is the probability of 
success Psuccess . Quantum theory can do better than classical in this 
case (e.g. For N=2 we get the same probabilities as CHSH)

 Define Py as the probability of success when Bob is given y, and the 
corresponding bias  By= 2Py – 1

 When proving Tsirelson’s bound from Information causality 

 A quadratic bound on the entropy is used to derive a 
probabilistic bound on this game given by

 Can we derive a similar bound directly from quantum theory? 
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 For any quantum strategy 

 Using similar techniques to those in the non-local computation 
paper  [Linden et al (2007)] we define 

and note that 
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 The quantum bound 

is easily saturated classically, by answering one question perfectly.

 Hence with this figure of merit quantum theory is no better 
than classical. Yet in box-world the sum can equal N

 Note that this also gives a bound on the probability of success

which is saturated when N is a power of 2 
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 We can use essentially the same proof to get a quantum bound for 
the inner product game (with Bob’s input having any distribution) 

 When Bob’s bit string is restricted to contain a single 1, this implies 
the information causality result. When N=1, it yields Tsirelson’s
bound, and the stronger quadratic version [Uffink 2002]
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Open questions

 Quantum theory has an entropy with many of the intuitive 
properties of the Shannon entropy. Can we find other theories like 
this?

 Are there other interesting informational principles which hold in 
quantum theory but not in general? 

 Is there a connection to statistical physics?

 Can we find quadratic bounds for other non-local games?


