Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.
 

Quantum algorithm for solving linear systems of equations



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other f4v compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
08050061

Abstract

Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector b, find a vector x such that Ax=b. Often, one does not need to know the solution x itself, but rather an approximation of the expectation value of some operator associated with x, e.g., x'Mx for some matrix M. In this case, when A is sparse and well-conditioned, with largest dimension N, the best known classical algorithms can find x and estimate x'Mx in O(N * poly(log(N))) time.
In this talk I'll describe a quantum algorithm for solving linear sets of equations that runs in poly(log N) time, an exponential improvement over the best classical algorithm.

This talk is based on my paper arXiv:0811.3171v2, which was written with Avinatan Hassidim and Seth Lloyd.