- Accueil »
- Psi-epistemic models are exponentially bad at explaining the distinguishability of quantum states

Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other f4v compatible player.

Speaker(s):

Scientific Areas:

Collection/Series:

PIRSA Number:

14020145

The status of the quantum state is perhaps the most controversial issue in the foundations of quantum theory. Is it an epistemic state (representing knowledge, information, or belief) or an ontic state (a direct reflection of reality)? In the ontological models framework, quantum states correspond to probability measures over more fundamental states of reality. The quantum state is then ontic if every pair of pure states corresponds to a pair of measures that do not overlap, and is otherwise epistemic. Recently, several authors have derived theorems that aim to show that the quantum state must be ontic in this framework. Each of these theorems involve auxiliary assumptions of varying degrees of plausibility. Without such assumptions, it has been shown that models exist in which the quantum state is epistemic. However, the definition of an epistemic quantum state used in these works is extremely permissive. Only two quantum states need correspond to overlapping measures and furthermore the amount of overlap may be arbitrarily small. In order to provide an explanation of quantum phenomena such as no-cloning and the indistinguishability of pure states, the amount of overlap should be comparable to the inner product of the quantum states. In this talk, I show, without making auxiliary assumptions, that the ratio of overlap to inner product must go to zero exponentially in Hilbert space dimension for some families of states. This is done by connecting the overlap to Kochen-Specker noncontextuality, from which we infer that any contextuality inequality gives a bound on the ratio of overlap to inner product.

©2012 Institut Périmètre de Physique Théorique