- Accueil »
- On the logical complexity of tiny heat engines -- and whether they can really be reversible

Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Speaker(s):

Scientific Areas:

Collection/Series:

PIRSA Number:

11030123

I consider systems that consist of a few hot and a few cold two-level systems and define heat engines as unitaries that extract energy. These unitaries perform logical operations whose complexity depends on both the desired efficiency and the temperature quotient. I show cases where the optimal heat engine solves a hard computational task (e.g. an NP-hard problem) [2]. Heat engines can also drive refrigerators and use the temperature difference between two systems for cooling a third one. I argue that these triples of systems define a classification of thermodynamic resources [1]. All the above assumes that unitaries are implemented by an external controller. To get a thermodynamically reversible process, the joint process on system and controller must be reversible. Then, the implementation of the joint process requires a "meta-controller", and so on. To study thermodynamic limits without such an infinite sequence of controllers, I introduce the model of "physically universal cellular automata", in which the boundary between system and controller can be shifted (in analogy to the Heisenberg-cut for the quantum measurement problem). I show that this model raises a lot of fundamental questions [3]. Literature: [1] Janzing et al: Thermodynamic cost of reliability and low temperatures: Tightening Landauer's principle and the second law, J. Stat. Phys. 2000 [2] Janzing: On the computation power of molecular heat engines, J. Stat. Phys. 2006 [3] Janzing: Is there a physically universal cellular automaton or Hamiltonian? arXiv:1009.1720

©2012 Institut Périmètre de Physique Théorique