Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Identifying phases of matter that are universal for quantum computation

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Recording Details

Scientific Areas: 
PIRSA Number: 


A recent breakthrough in quantum computing has been the realization that quantum computation can proceed solely through single-qubit measurements on an appropriate quantum state - for example, the ground state of an interacting many-body system. It would be unfortunate, however, if the usefulness of a ground state for quantum computation was critically dependent on the details of the system\'s Hamiltonian; a much more powerful result would be the existence of a robust ordered phase which is characterized by the ability to perform measurement-based quantum computation (MBQC). To identify such phases, we propose to use nonlocal correlation functions that quantify the fidelity of quantum gates performed between distant qubits. We investigate a simple spin-lattice system based on the cluster-state model for MBQC, and demonstrate that it possesses a zero temperature phase transition between a disordered phase and an ordered \'cluster phase\' in which it is possible to perform a universal set of quantum gates.