Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.
 

Field-driven spin liquids in Kitaev materials



Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


Recording Details

Speaker(s): 
Scientific Areas: 
Collection/Series: 
PIRSA Number: 
19050018

Abstract

Kitaev materials — spin-orbit assisted Mott insulators, in which local, spin-orbit entangled j=1/2 moments form that are subject to strong bond-directional interactions — have attracted broad interest for their potential to realize spin liquids. Experimentally, a number of 4d and 5d systems have been widely studied including the honeycomb materials Na2IrO3, α-Li2IrO3, and RuCl3 as candidate spin liquid compounds — however, all of these materials magnetically order at sufficiently low temperatures. In this talk, I will discuss the physics of Kitaev materials that plays out when applying magnetic fields. Experiments on RuCl3 indicate the formation of a chiral spin liquid that gives rise to an observed quantized thermal Hall effect. Conceptually, this asks for a deeper understanding of the physics of the Kitaev model in tilted magnetic fields. I will report on our recent numerical studies that give strong evidence for a Higgs transition from the well known Z2 topological spin liquid to a gapless U(1) spin liquid with a spinon Fermi surface and put this into perspective of experimental studies.