Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

The compositional structure of multipartite quantum entanglement

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Recording Details

Scientific Areas: 
PIRSA Number: 


Multipartite quantum states constitute a (if not the) key resource for quantum computations and protocols. However obtaining a generic, structural understanding of entanglement in N-qubit systems is still largely an open problem. Here we show that multipartite quantum entanglement admits a compositional structure. The two SLOCC-classes of genuinely entangled 3-qubit states, the GHZ-class and the W-class, exactly correspond with the two kinds of commutative Frobenius algebras on C^2, namely `special' ones and `anti-special' ones. Within the graphical language of symmetric monoidal categories, the distinction between `special' and `anti-special' is purely topological, in terms of `connected' vs.~`disconnected'. These GHZ and W Frobenius algebras form the primitives of a graphical calculus which is expressive enough to generate and reason about representatives of arbitrary N-qubit states.
This calculus induces a generalised graph state paradigm for measurement-based quantum computing, and refines the graphical calculus of complementary observables due to Duncan and one of the authors [ICALP'08], which has already shown itself to have many applications and admit automation.
References: Bob Coecke and Aleks Kissinger, http://arxiv.org/abs/1002.2540