Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Building Fractional Topological Insulators

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other f4v compatible player.

Recording Details

Scientific Areas: 
PIRSA Number: 


Time-reversal invariant band insulators can be separated into two categories: `ordinary' insulators and `topological' insulators. Topological band insulators have low-energy edge modes that cannot be gapped without violating time-reversal symmetry, while ordinary insulators do not. A natural question is whether more exotic time-reversal invariant insulators (insulators not connected adiabatically to band insulators) can also exhibit time-reversal protected edge modes. In 2 dimensions, one example of this is the fractional spin Hall insulator (essentially a spin-up and spin-down copy of a fractional quantum Hall insulator, with opposite effective magnetic fields for each spin). I will discuss another family of strongly interacting insulators, which exist in both 2 and 3 dimensions, that can have time-reversal protected edge modes. This gives a new set of examples of `fractional' topological insulators.