Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Approximate quantum encryption and entropic security

Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.

Recording Details

Scientific Areas: 
PIRSA Number: 


An approximate quantum encryption scheme uses a private key to encrypt a quantum state while leaking only a very small (though non-zero) amount of information to the adversary. Previous work has shown that while we need 2n bits of key to encrypt n qubits exactly, we can get away with only n bits in the approximate case, provided that we know that the state to be encrypted is not entangled with something that the adversary already has in his possession. In this talk I will show a generalization of this result: approximate quantum encryption requires roughly n-t bits of key, where t is a lower bound on the conditional min-entropy of the state to be encrypted given the adversary's prior knowledge. Along the way, I will introduce a quantum version of entropic security and show how the approximate quantum encryption scheme fits within this framework. This is joint work with Simon-Pierre Desrosiers.