A A   
Connect with us:      
Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Jeudi sep 14, 2017
Speaker(s): 

Calculating the path integral over all causal sets will take a lot of computing power, and requires a way to suppress non-manifold like causal sets. To work towards these goals we can start by taking the path integral over a restricted class of causal sets, the 2d orders.

Collection/Series: 
Scientific Areas: 

 

 

Mercredi sep 13, 2017
Speaker(s): 

I will review the phenomenology of light thermal dark matter candidates and their implications for astrophysics and cosmology. 

Collection/Series: 

 

Mercredi sep 13, 2017
Speaker(s): 

 

Mardi sep 12, 2017
Speaker(s): 

After a small review on divergent series and Borel resummation I will discuss a geometric approach based on Picard-Lefschetz theory to study the interplay between perturbative and non-perturbative effects in the QM path integral.

Collection/Series: 
Scientific Areas: 

 

Mardi sep 12, 2017
Speaker(s): 

The hydrodynamic approximation is an extremely powerful tool to describe the behavior of many-body systems such as gases. At the Euler scale (that is, when variations of densities and currents occur only on large space-time scales), the approximation is based on the idea of local thermodynamic equilibrium: locally, within fluid cells, the system is in a Galilean or relativistic boost of a Gibbs equilibrium state.

Collection/Series: 
Scientific Areas: 

 

Mardi sep 12, 2017
Speaker(s): 

The study of super-Eddington accretion is essential to our understanding of the growth of super-massive black holes in the early universe, the accretion of tidally disrupted stars, and the nature of ultraluminous X-ray sources.  Unfortunately, this mode of accretion is particularly difficult to model because of the multidimensionality of the flow, the importance magnetohydrodynamic turbulence, and the dominant dynamical role played by radiation forces.  However, recent increases in computing power and advances in algorithms are facilitating major improvements in our ab

Collection/Series: 
Scientific Areas: 

Pages