Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
One of the major problems hindering progress in quantum many body systems is the inability to describe the spectrum of the Hamiltonian. The spectrum corresponds to the energy spectrum of the problem and is of out-most importance in accounting for the physical properties of the system. A perceived difficulty is the exponential growth of the Hamiltonian with the number of particles involved. Therefore, even for a modest number of particles, direct computation appears intractable.
Entangled (i.e., not separable) quantum states play fundamental roles in quantum information theory; therefore, it is important to know the ''size'' of entanglement (and hence separability) for various measures, such as, Hilbert-Schmidt measure, Bures measure, induced measure, and $\alpha$-measure. In this talk, I will present new comparison results of $\alpha$-measure with Bures measure and Hilbert-Schmidt measure.
In this talk we will give an overview of how different probabilistic and quantum probabilistic techniques can be used to find Bell inequalities with large violation. This will include previous result on violation for tripartite systems and more recent results with Palazuelos on probabilities for bipartite systems. Quite surprisingly the latest results are the most elementary, but lead to some rather surprsing independence of entropy and large violation.
It is a fundamental, if elementary, observation that to obliterate the quantum information in n qubits by random unitaries, an amount of randomness of at least 2n bits is required. If the randomisation condition is relaxed to perform only approximately, we obtain two answers, depending on the norm used to compare the ideal and the approximation. Using the ''naive'' norm brings down the cost to n bits, while under the more appropriate complete norm it is still essentially 2n.
TBA
Understanding NP-complete problems is a central topic in computer science. This is why adiabatic quantum optimization has attracted so much attention, as it provided a new approach to tackle NP-complete problems using a quantum computer. The efficiency of this approach is limited by small spectral gaps between the ground and excited states of the quantum computer's Hamiltonian.
We introduce a class of probability spaces whose objects are infinite graphs and whose probability distributions are obtained as limits of distributions for finite graphs. The notions of Hausdorff and spectral dimension for such ensembles are defined and some results on their value in koncrete examples, such as random trees, will be described.
TBA
Using a formulation of the post-Newtonian expansion in terms of Feynman graphs, we discuss how various tests of General Relativity (GR) can be translated into measurement of the three- and four-graviton vertices. The timing of the Hulse-Taylor binary pulsar provides a bound on the deviation of the three-graviton vertex from the GR prediction at the 0.1% level.
©2012 Institut Périmètre de Physique Théorique