Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Mardi aoû 12, 2008
Speaker(s): 

 

Mardi aoû 12, 2008
Speaker(s): 

Space obeys the rules of Euclidean geometry. Spacetime obeys the rules of a new kind of geometry called Minkowskian geometry.

Learning Outcomes:

• Triangles in spacetime obey a Pythagoras-like theorem, but with an unusual minus sign.

• The true nature of time as geometrical distance in spacetime.

• How to analyse and resolve the Twins’ Paradox using spacetime diagrams in combination with Minkowskian geometry.

Collection/Series: 

 

Mardi aoû 12, 2008
Speaker(s): 

Learning to use Minkowskian geometry to understand, very simply, a variety of aspects of Einstein’s spacetime.
Learning Outcomes:
• How a straight line is the longest path between two points in spacetime.
• How a light particle experiences space and time: its journey from one location in the universe to another involves zero spacetime distance, and is thus instantaneous!
• How Einstein’s special relativity has no difficulty handling accelerated observers.

Collection/Series: 

 

Mardi aoû 12, 2008
Speaker(s): 

A discussion of how to synchronize clocks that are separated in space, and how this leads to the relativity of simultaneity.

Learning Outcomes:

• Understanding that clock synchronization is a physical process, and exploring various methods of synchronization using spacetime diagrams.

• How to measure distance with a clock: the concept of radar ranging distance.

• A profound realization about the nature of spacetime: Events that are simultaneous for one observer might not be simultaneous for another.

Collection/Series: 

 

Lundi aoû 11, 2008
Speaker(s): 

 

Lundi aoû 11, 2008
Speaker(s): 

Highlighting the essential difference between the classical and quantum worlds.

Learning Outcomes:

• A recap of what we’ve learned so far.

• Understanding that in the classical world we have either “particle moving to the right” OR “particle moving to the left.”

• Understanding that, in the quantum world, OR can be replaced with AND: “particle moving to the right” AND “particle moving to the left.”

Collection/Series: 

 

Lundi aoû 11, 2008
Speaker(s): 

A discussion of the Heisenberg Uncertainty Principle as another way to understand quantum weirdness.
Learning Outcomes:
• Some deeper insights into what a particle probability pattern means.
• The Heisenberg Uncertainty Principle gives a limit to the precision with which we can simultaneously know both the position and the momentum of a particle.
• Deriving the Heisenberg Uncertainty Principle from the de Broglie relation.

Collection/Series: 

 

Lundi aoû 11, 2008
Speaker(s): 

A more in depth discussion of what the Heisenberg Uncertainty Principle is trying to tell us about the nature of reality.

Learning Outcomes:

• Understanding the strong interpretation of the HUP: “Particles cannot simultaneously possess a definite position and a definite momentum.”

• Why the classical question: “Given a particle’s initial position and momentum, what is its position and momentum as some later time t?” makes no sense in the quantum world.

• Richard Feynman’s remarkable sum over paths interpretation of quantum mechanics.

Collection/Series: 

 

Lundi aoû 11, 2008
Speaker(s): 

 

Lundi aoû 11, 2008
Speaker(s): 

Repeating the experiment from SR-3 using light rather than sound, and understanding what Einstein assumed regarding the speed of light.
Learning Outcomes:

• How to draw a spacetime diagram that represents the sending and receiving of a light signal.

• Understanding that Einstein's Speed of Light Principle: "For an observer at rest, the speed of light is c, independent of the motion of the source" is natural and easy to believe.

Collection/Series: 

Pages