Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Mardi juin 13, 2017
Speaker(s): 

The modeling of pulsar radio and gamma-ray emission suggests that in order to interpret the observations one needs to understand the field geometry and the plasma state in the emission region. In recent years, significant progress has been achieved in understanding the magnetospheric structure in the limit of abundant plasma supply. However, the very presence of dense plasma everywhere in the magnetosphere is not obvious. Even the region where the observed emission is produced is subject to debate.

Collection/Series: 

 

Lundi juin 12, 2017
Speaker(s): 

We use the cluster structure on the Grassmannian and the combinatorics of plabic graphs to exhibit a new aspect of mirror symmetry for Grassmannians in terms of polytopes.

Collection/Series: 
Scientific Areas: 

 

Vendredi juin 09, 2017
Speaker(s): 

Numerical Linked Cluster (NLC) expansions can accurately compute thermal properties of quantum spin models in the thermodynamic limit in certain parameter regimes. In classical spin-ice models, where all correlations remain short-ranged down to T=0, these expansions can be convergent even at low T. However, for quantum spin-ice models, they converge only when either temperatures are not too small or there is a strong magnetic field present.

Scientific Areas: 

Pages