Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Mercredi aoû 10, 2016

Can quantum computers outperform classical computers on any computational problem in the near future? We study the problem of sampling from the output distribution of random quantum circuits.
Sampling from this distribution requires an exponential amount of classical computational resources. We argue that quantum supremacy can be achieved in the near future with approximately fifty superconducting qubits and without error correction despite the fact that quantum random circuits are extremely sensitive to errors.

Collection/Series: 
Scientific Areas: 

 

 

Mardi aoû 09, 2016
Collection/Series: 
Scientific Areas: 

 

Mardi aoû 09, 2016
Collection/Series: 
Scientific Areas: 

 

Mardi aoû 09, 2016
Speaker(s): 

We propose a family of models with an exponential number of parameters, but which are approximated by a tensor network. Tensor networks are used to represent quantum wavefunctions, and powerful methods for optimizing them can be extended to machine learning applications as well. We use a matrix product state to classify images, and find that a surprisingly small bond dimension yields state-of-the-art results.

Collection/Series: 
Scientific Areas: 

 

Mardi aoû 09, 2016
Speaker(s): 

In the first part of this talk, I will focus on the physics of deep learning, a popular subfield of machine learning where recent performance on tasks such as visual object recognition rivals human performance. I present work relating greedy training of deep belief networks to a form of variational real-space renormalization. This connection may help explain how deep networks automatically learn relevant features from data and extract independent factors of variation.

Collection/Series: 
Scientific Areas: 

 

Mardi aoû 09, 2016
Speaker(s): 

Imagine you run a supermarket, and assume that for each customer “u” you record what “u” is buying. For instance, you may observe that u=1 typically buys bread and cheese and u=2 typically buys bread and salami. Studying your dataset you suspect that generally, customers who are likely to buy cheese are likely to buy bread as well. Rules of this kind are called association rules. Mining association rules is of significant practical importance in fields like market basket analysis and healthcare.

Collection/Series: 
Scientific Areas: 

 

Mardi aoû 09, 2016
Speaker(s): 

Pages