Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Mercredi juin 18, 2014

We consider pseudo-scalar and pseudo-vector interaction of atomic electrons with hypothetical dark matter particles (e.g., axions). These interactions lead to oscillating atomic parity non-conserving (PNC) amplitudes and/or oscillating electric dipole moments (EDM). In static
limit for PNC, existing atomic PNC experiments can be used to constrain time component of the pseudo-vector field.

 

Mercredi juin 18, 2014
Speaker(s): 

We discuss new observable effects of axionic dark matter in atoms, molecules and nuclei. We show that the interaction of an axion field, or in general a pseudoscalar field, with the axial-vector current generated by an electron through a derivative-type coupling can give rise to a time-dependent mixing of opposite-parity states in atomic and molecular systems. Likewise, the analogous interaction of an axion field with the axial-vector current generated by a nucleon can give rise to time-dependent mixing of opposite-parity states in nuclear systems.

 

Mercredi juin 18, 2014
Speaker(s): 

Analogies have played a very important role in physics and mathematics, as they provide new ways of looking at problems that permit cross-fertilization of ideas among different branches of science. An analogue gravity model is a generic dynamical system (typically but not always based on condensed matter physics) where the propagation of excitations/perturbations can be described via hyperbolic equations of motion possibly characterized be one single metric element for all the perturbations.

Collection/Series: 
Scientific Areas: 

 

Mercredi juin 18, 2014
Speaker(s): 

More often than not, astrophysical probes are superior to direct laboratory tests when considering light, very weekly interacting particles and it takes clever strategies and/or ultra-pure experimental setups for direct tests to be competitive. In this talk, I will review the astrophysical side of the story with a particular focus on dark photons and axion-like particles. I will also present some recent results on the emission process of dark photons with mass below 10 keV from the interior of stars.

 

Mercredi juin 18, 2014
Speaker(s): 

Ultra-light axions (ULAs) with masses in the range 1e-33 eV1e-24 eV, ruling out ULA dark matter in the simplest inflationary scenarios over the entire range considered, as well as the "anthropic window" for the QCD axion.

 

Mercredi juin 18, 2014
Speaker(s): 

I will review the theoretical motivations for axion and axion-like-particles. I will then discuss bounds on such particles and highlight ways to experimentally probe them.

 

Mercredi juin 18, 2014
Speaker(s): 

The recently reported evidence for the cosmic microwave background signature of inflationary gravitational waves is very tantalizing. I will discuss how the measurement is done, the evidence presented by BICEP2, the interpretation, and some of the criticisms of the arguments presented by BICEP2 that the signal is not dust-dominated. I will then review next steps to be taken with future CMB experiments and with galaxy surveys.

 

Mardi juin 17, 2014
Speaker(s): 

The simplicity of the atomic structure of lithium has long made it a system of theoretical interest. With the development of stabilized optical frequency combs, it is possible to achieve experimental accuracies that provide significant tests of atomic theory calculations as well as a window into nuclear structure. I will discuss an ongoing experimental effort at Oberlin College to measure the energy levels of lithium using a stabilized optical frequency comb.

Pages