Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Lundi mar 06, 2017
Speaker(s): 

Galaxy mergers are a standard aspect of galaxy formation and evolution, and most (likely all) large galaxies contain supermassive black holes. As part of the merging process, the supermassive black holes should in-spiral together and eventually merge, generating both continuous gravitational waves and a background of gravitational radiation in the nanohertz to microhertz regime.  An array of precisely timed pulsars spread across the sky can form a galactic-scale gravitational wave detector in the nanohertz band.

Collection/Series: 

 

Vendredi mar 03, 2017
Speaker(s): 

The spectral action functional of noncommutative geometry provides a model of Euclidean (modified) gravity, possibly coupled to matter. The terms in the large energy asymptotic expansion of the spectral action can be computed via pseudodifferential calculus. In the case of highly symmetric spacetimes, like Robertson-Walker metrics and Bianchi IX gravitational instantons, there is a richer arithmetic structure in the spectral action, and the terms in the asymptotic expansion are expressiblein terms of periods of motives and of modular forms.

Collection/Series: 

 

Jeudi mar 02, 2017
Speaker(s): 

In this talk, I will discuss the asymptotic safety paradigm, and will highlight that it can provide a framework for a predictive ultraviolet completion for gravity and matter. Specifically, I will discuss compelling hints that exist for the realization of asymptotic safety in pure gravity, and will then present recent progress on the case of gravity coupled to Standard Model matter.

Collection/Series: 
Scientific Areas: 

Pages