Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Lundi juin 19, 2017
Speaker(s): 

Frustrated magnets provide a fertile ground for discovering exotic states of matter, such as those with topologically non-trivial properties. Motivated by several near-ideal material realizations, we focus on aspects of the two-dimensional kagome antiferromagnet. I present two of our works in this area both involving the spin-1/2 XXZ antiferromagnetic Heisenberg model. First, guided by a previous field theoretical study, we explore the XY limit ($J_z=0$) for the case of 2/3 magnetization (i.e.

Collection/Series: 
Scientific Areas: 

 

Lundi juin 19, 2017
Speaker(s): 
Scientific Areas: 

 

Lundi juin 19, 2017
Speaker(s): 
Scientific Areas: 

 

Lundi juin 19, 2017
Speaker(s): 
Scientific Areas: 

 

Vendredi juin 16, 2017
Speaker(s): 

Many model quantum spin systems have been proposed to realize critical points or phases described by 2+1 dimensional conformal gauge theories. On a torus of size L and modular parameter τ, the energy levels of such gauge theories equal (1/L) times universal functions of τ. We compute the universal spectrum of QED3, a U(1) gauge theory with Nf two-component massless Dirac fermions, in the large-Nf limit.

Collection/Series: 
Scientific Areas: 

 

Jeudi juin 15, 2017
Speaker(s): 

I will discuss the possibilities to mimic black hole physics in fluid flows. The starting point is an analogy discovered by Unruh between the propagation of sound in a flowing fluid and waves around a black hole. In these analog setups, it is possible to test various black hole effects, and challenge their robustness. In a recent water wave experiment, we have shown how to exploit this analogy to observe superradiant scattering, that is, the amplification of waves by extraction of angular momentum from a rotating flow.

Collection/Series: 
Scientific Areas: 

Pages