Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Niels Bohr was Nobel-winning physicist – a pioneer of quantum theory – but his influence extended far beyond his own research. He was a gifted teacher who established one of the 20th century’s most important centres for physics, and was instrumental in the development of physics worldwide. He became a statesman following the Second World War, calling for international cooperation to avoid nuclear conflict. Bohr’s legacy – in science, humanitarianism, and family – spans generations, as his grandson will illustrate during a special public lecture webcast at Perimeter Institute. Dr.
I will present a novel approach to explain the smoothness and flatness of the universe on large scales and the generation of a nearly scale-invariant spectrum of adiabatic density perturbations.
The theory of resurgence connects perturbative and non-perturbative physics. Focusing on certain one-dimensional quantum mechanical systems with degenerate harmonic minima, I will explain how the resurgent trans-series expansions for the low lying energy eigenvalues follow from the exact quantization condition via the uniform WKB approach. In the opposite spectral region (with high lying eigenvalues), in contrast to the divergent asymptotic expansions expressed as trans-series, the relevant expansions are convergent.
The first lecture will be devoted to the review of the classical theory of the Witten Laplacian, the second -- to the concepts of resurgent analysis. The third -- to applications of the resurgent analysis to the Witten Laplacian. Time permitting, we will touch upon some foundational questions of resurgent analysis.
These lectures will focus on the geometry of ambitwistor string theories. These are infinite tension analogues of conventional strings and provide the theory that leads to the remarkable formulae for tree amplitudes that have been developed by Cachazo, He and Yuan based on the scattering equations. Although the bosonic ambitwistor string action is expressed in space-time, it will be seen that its target is classically `ambitwistor space', the space of complexified null geodesics in the complexification of a space-time.
I will begin with the perspective that the perturbative expansion is an augmented generating function and then discuss some of the results which follow from this perspective.
We study a general class of D-dimensional spacetimes that admit a non-twisting and shear-free null vector field. This includes the famous non-expanding Kundt family and the expanding Robinson-Trautman family of spacetimes. In particular, we show that the algebraic structure of the Weyl tensor is I(b) or more special, and derive surprisingly simple conditions under which the optically privileged null direction is a multiple WAND. All possible algebraically special types, including the refinement to subtypes, are thus identified.
I will give an overview of the algebro-geometric approach to Feynman integral in perturbative quantum field theory and the occurrence of motives and periods in parametric Feynman integrals in momentum space, focusing on joint work with Paolo Aluffi.
I am going to discuss applications of String/M/F theory dualities to argue about the toroidal compactification to four dimensions of 6d (1,0) theories.
The first lecture will be devoted to the review of the classical theory of the Witten Laplacian, the second -- to the concepts of resurgent analysis. The third -- to applications of the resurgent analysis to the Witten Laplacian. Time permitting, we will touch upon some foundational questions of resurgent analysis.
Check back for details on the next lecture in Perimeter's Public Lectures Series