Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Two aspects of asymptotic safety are highlighted. First, I discuss how asymptotic safety can be tested with the help of a bootstrap strategy. This is then applied to high-order polynomial actions of the Ricci scalar and beyond. Second, I discuss how phenomenological signatures of asymptotic safety can be searched for at particle colliders such as the LHC, provided that the quantum gravity scale is in the TeV energy regime.
We know how to make perturbative calculations in quantum gravity using the framework of effective field theory. I will describe the basics of the effective field theory treatment and look at several calculations. There are obstacles to describing these with running coupling constants. Finally, I will do my best to try to connect these with the Asymptotic Safety program.
In the first part of the seminar, I will describe a general approach to write down a large family of model SU(N) anti-ferromagnets that do not suffer from the sign problem. In the second half I will show how such Hamiltonians are useful for the study of deconfined quantum critical points and possibly other exotic physics.
Given (a set of) fundamental models of quantum space time, for instance spin foam models, we aim to understand the large scale physics encoded in these fundamental models. Renormalization and coarse graining address this issue and help to understand how large scale physics depends on parameters in the fundamental models.
Group field theories are tensorial models enriched with group-theoretic data in order to define proper field theories of quantum geometry. They can be understood as a second quantised (Fock space) reformulation of loop quantum gravity kinematics and dynamics. The renormalization group provides, as a in any quantum field theory, a key tool to select well-defined models, to unravel the impact of quantum effects on the dynamics across different scales, and to study the continuum limit.
Tensor models generalize matrix models and provide a framework for the study of random geometries in arbitrary dimensions. Like matrix models they support a 1/N expansion, where N is the size of the tensor, with an analytically controlled large N limit. In this talk I will present some recent results in this field and I will discuss their implications for quantum gravity.