Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Laser-cooled trapped ions are among the most versatile experimental platforms for exploring quantum information. In this talk, I will give a brief overview of this system and its capabilities to simulate non-trivial interacting quantum models. Internal states of these ions, such as hyperfine states, constitute well isolated qubit (or spin-1/2) states, with quantum coherence demonstrated up to fifteen minutes. Individual qubits states can be detected by laser beams with near perfection.
In this talk we propose a Hamiltonian approach to 2+1D gapped topological phases on an open surface with boundary. The bulk part is
(Levin-Wen) string-net models arising from a unitary fusion category (can be viewed as Hamiltonian approach to extended Turaev-Viro TQFT), while the boundary Hamiltonian is constructed using any Frobenius algebra in the input category. The combined Hamiltonian is exactly solvable and gives rise to a gapped energy spectrum which is topologically protected.
The fact that in physics concepts such as space, time, mass and energy are considered to be foundational has been conveniently serving a set of higher-level physical theories.
However, this keeps us from gaining a deeper understanding of such concepts which can in turn help us build a theory based on truly foundational concepts.
In this talk I introduce an alternate description of physical reality based on a simple foundational concept that there exist things that influence one another.
In this talk I will discuss a new use for conformal field theory crossing equation in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. I will revisit this problem and the dual 1/N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1/N^2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders.
We are currently entering the era of precision CMB polarization observations. The most exciting scientific targets are a possible detection of primordial gravitational waves and a measurement of the sum of the neutrino masses. The former depends on the extensive landscape of early Universe models, while the latter has been forecasted to present a clear, and reachable, scientific target. First, if large angular B modes are detected, we should firmly establish that these are sourced by primordial gravitational waves.
©2012 Institut Périmètre de Physique Théorique