This series consists of talks in the area of Quantum Gravity.
Recent implications of results from quantum information theory applied to black holes has led to the confusing conclusions that requires either abandoning the equivalence principle (e.g. the firewall picture), or the no-hair theorem (e.g. the fuzzball picture), or even more unpalatable options. The recent discovery of a pulsar orbiting a black hole opens up new possibilities for tests of theories of gravity. We examine possible observational effects of semiclassical quantum gravity in the vicinity of black holes, as probed by pulsars and event horizon telescope imaging of flares.
Loop quantum gravity has a spinorial representation. Spinors simplify the symplectic structure of the theory, but can they also teach us something about the dynamics? We study this question in three dimensions, and derive the Ponzano–-Regge model from a spinorial action. Our construction starts from the first-order Palatini formalism, and gives the discretised action in the spinorial representation. A one-dimensional refinement limit brings us back to a continuum theory. The three-dimensional action turns into a line integral over the edges of the discretisation.
I review a class of nonlocally modified gravity models which were proposed to explain the current phase of cosmic acceleration without dark energy. Among the topics considered are deriving causal and conserved field equations, adjusting the model to make it support a given expansion history, why these models do not require an elaborate screening mechanism to evade solar system tests, degrees of freedom and kinetic stability, and the negative verdict of structure formation.
We compute quantum corrections to the Raychaudhuri equation, by replacing classical geodesics with quantal (Bohmian) trajectories, and show that they prevent focusing of geodesics, and the formation of conjugate points. We discuss implications for the Hawking-Penrose singularity theorems, and for curvature singularities. Reference: arXiv: 1311.6539
It has been argued that if black hole evaporation is a unitary quantum process, then a black hole horizon must be cloaked by a "firewall", i.e. a highly excited state of local quantum fields. This reasoning is based on factorizing the Hilbert space into interior and exterior degrees of freedom. Such factorization ignores the Wheeler-deWitt constraint equation, which arises from the diffeomorphism invariance of quantum gravity. I will argue that this constraint evades the firewall.
By focusing on aspects of black hole thermodynamics, I will present some evidences supporting the unexpected role of the complex self-dual variables in quantum gravity. This will also be the occasion of revisiting some aspects of three-dimensional gravity, and in particular the link between the BTZ black hole and the Turaev-Viro state sum model. Also the information on the website for next week needs to be modified: We will not have a seminar on Thursday (as Thursday is PI day).
In this talk I will review the interpretation of Wilson line operators in the context of higher spin gravity in 2+1 dim and holography. I will show how a Wilson line encapsulates the thermodynamics of black holes. Furthermore it provides an elegant description of massive particles. This opens a new window of observables which will allow us to probe the true geometrical nature of higher spin gravity.
The entanglement of the quantum field theoretic vacuum state is affected by curvature. I ask if or under which conditions the curvature of spacetime can be expressed entirely in terms of the spatial entanglement structure of the vacuum. This would open up the prospect that general relativity could be formulated in quantum theoretic terms, which should then be helpful for studies in quantum gravity.
Spin foams provide models for quantum gravity and hence quantum space time. One of the key outstanding questions is to show that they reproduce smooth space time manifolds in a continuum limit.I will start with a very short introduction to spin foams and the structure of quantum space time they encode.
The most relevant evidences in favour of the Lorentzian EPRL-FK spinfoam model come from its capibility of reproducing the expected semiclassical limit in the large spin regime. The main examples of this are the large spin limit of the vertex amplitude, later extended to arbitrary triangulations, and that of the spinfoam graviton propagator, which was calculated on the simplest possible two complex. These results are very promising. Nonetheless, their relevance may be endangered by the effects associated to radiative corrections.