This series consists of talks in the area of Quantum Gravity.
I offer a personal perspective on the causal dynamical triangulations approach to the construction of quantum theories of gravity. After briefly introducing the approach's formalism and results, I illuminate this perspective with 3+1 vignettes of recent and ongoing research.
A quantum isolated horizon can be modeled by an SU(2) Chern-Simons theory on a punctured 2-sphere. We show how a local 2-dimensional conformal symmetry arises at each puncture inducing an infinite set of new observables localized at the horizon which satisfy a Kac-Moody algebra. By means of the isolated horizon boundary conditions, we represent the gravitational fluxes degrees of freedom in terms of the zero modes of the Kac-Moody algebra defined on the boundary of a punctured disk. In this way, our construction encodes a precise notion of CFT/gravity correspondence.
We will discuss our work on (1) the global food crisis and the implications for how we can address hunger and social unrest around the world, (2) the financial crisis and the implications for the role of regulation in economic market stability, and (3) the Ebola epidemic and the vulnerability of global civilization to pandemics.
I will review recent work on tensorial group field theories (TGFTs). The renormalization methods being developed in this context provide more and more control over their field-theoretic structures, and for models which increasingly resemble loop quantum gravity. Perhaps surprisingly, some of these models are asymptotically free and can therefore be made sense of at arbitrary values of the (abstract) scale with respect to which they are organized. They define in this sense UV complete quantum field theories.
It is by now well established that black holes emit a thermal radiation and undergo an evaporation process. The original Hawking evaporation scenario, based on quantum fields on a classical background geometry, has been vastly extended and improved, in order to take into account in particular the backreaction of the radiation on the geometry. This can be done for example in a semiclassical setup, where the Einstein equations are sourced by an effective stress energy tensor.
I present a proposal for a worldline action for discretized gravity with the same field content as loop quantum gravity. The proposal is defined through its action, which is a one-dimensional integral over the edges of the discretization. Every edge carries a finite-dimensional phase space, and the evolution equations are generated by a Hamiltonian, which is a sum over the constraints of the theory.
I present a proposal for a worldline action for discretized gravity with the same field content as loop quantum gravity. The proposal is defined through its action, which is a one-dimensional integral over the edges of the discretization. Every edge carries a finite-dimensional phase space, and the evolution equations are generated by a Hamiltonian, which is a sum over the constraints of the theory.
We study in the context of loop quantum cosmology the effect of the analytic continuation that sends the Barbero-Immirzi parameter to a purely imaginary value. We show that this construction leads once again to a bouncing scenario, in which however the contracting and expanding phases on each side of the bounce are not symmetrical. Moreover, the minimal volume reached by the universe and the critical matter density become naturally independent of the Barbero-Immirzi parameter.
I will discuss why the search for B-Mode Polarization of the Cosmic Microwave Background (CMB) is very important for early universe cosmology, but that a discovery of such a polarization mode is in no way a confirmation of inflationary cosmology.
We isolate an important physical distinction between gauge symmetries which exist at the level of histories and states, and those which exist at the level of histories and not states. This distinction is characterised explicitly using a generalized Hamilton-Jacobi formalism within which a non-standard prescription for the observables of classical totally constrained systems is developed. These ideas motivate a `relational quantization' procedure which is different from the standard `Dirac quanization'.