MANY WORLDS AT 50
Probability is often regarded as a problem for the many-worlds interpretation: if all branches of the splitting wavefunction are equally real, what sense does it make to say that the branches have different probabilities? In the decision-theoretic approach due to Deutsch and Wallace, probabilities acquire a meaning through the preferences of a rational agent. This talk reviews the decision-theoretic approach to probability in classical physics and quantum mechanics and shows that its application to the many-world interpretation creates a new difficulty for the latter.
I will rehearse and try to sharpen some of the perennial worries about making sense of probabilities in Everettian interpretations of quantum mechanics, with particular attention to the recent Decision-Theoretic proposals of Deutsch and others
I will review the current state of the probability problem. My main focus will be on the attempts by David Deutsch and myself to provide a proof of the Born Rule starting from Everettian assumptions, but I will also attempt to locate these attempts within the more general framework of the probability problem.
Everett explained collapse of the wavepacket by noting that observer will perceive the state of the measured quantum system relative to the state of his own records. Two elements (missing in this simple and compelling explanation of effective collapse) are required to complete relative state interpretation: (i) A preferred basis for states of at least some systems in the wholly quantum Universe must be identified, so that apparatus pointers and other recording devices can persist over time.
I shall present an overview of quantum mechanics in the Everett interpretation, that emphasises its structural characteristics, as a theory of what exists. In this respect it shares common ground with other fundamental theories in physics. As such its appeal is conservative; it makes do with the purely unitary equations of quantum mechanics as exceptionless and universal. It also makes do with standard methods for extracting \'high level\' or \'emergent\' ontology, the furniture of macroscopic worlds, from largish molecules on up.
©2012 Institut Périmètre de Physique Théorique