This series consists of talks in the areas of Cosmology, Gravitation and Particle Physics.
The talk is based on joint work with Yuri Manin (arXiv:1402.2158). Using algebro-geometric blowups it is possible to construct a family of models of gluing of aeons across a Big-Bang type singularity, which includes the case of Penrose's conformally cyclic cosmology, as well as inflationary multiverse models generalizing the "eternal symmetree", and BKLL mixmaster type cosmologies. Using the mixmaster dynamics, formulated in terms of elliptic curves and modular curves, we speculate on the geometry of cosmological time near the gluing of aeons.
Accreting supermassive black holes in the centres of galaxies (i.e. Active Galactic Nuclei - AGN) are now known to play a prominent role in the growth of galaxies through cosmic time. The fundamental parameters to explain the whole range of observed properties of these accreting systems, however, is still elusive. We will present some results from multi-wavelength investigations of the nature of accreting supermassive black holes, including those that produce low kinetic power jets as well as high kinetic power, relativistic jets.
I will try to explain how cosmological coincidence of the two values, the matter energy density and the dark energy density, at the present epoch based on a single scalar field model whith a quartic potential, non-mimimally interacting with gravity. Dark energy in this model originates from the potential energy of the scalar field, which is sourced by the appearance of non-relativistic matter at the time z~ 10^10. No fine tuning of parameter are neccessary.
The singularity theorems of general relativity tell us that spacetime singularities form in gravitational collapse, but tell us very little about the precise nature of these singularities. More information can be found using analytic approximations and numerical simulations. It is conjectured that inside black holes are two types of singularities: one that is spacelike, local, and oscillatory, and the other that is null and weak.
A variable speed of light (VSL) cosmology is developed with a spontaneous breaking of Lorentz invariance in the early universe. A non-minimal electromagnetic coupling to curvature and the resulting quantum electrodynamic vacuum polarization dispersive medium can produce c >> c_{0} in the early universe, where c_{0} is the measured speed of light today.
In scalar-tensor gravity, black holes do not obey the Jebsen-Birkhoff theorem. Non-isolated black holes can be highly dynamical and the teleological concept of event horizon is replaced by the apparent or trapping horizon. Dynamical solutions describing inhomogeneities embedded in cosmological "backgrounds" and the phenomenology of their apparent horizons, which often appear/vanish in pairs, will be described. Isolated black holes, in contrast, have no hair and are the same as in general relativity.
This talk will try to highlight some basic problems connected with conclusions uncritically drawn from well known works. These include: 1. The Schwarzschild solution 2. The formation of black holes by gravitational collapse 3. The no hair theorem 4. The principle of equivalence in the very early universe.
The thermodynamics of black holes will be reviewed and recent developments incorporating pressure into the first law described. The asymptotically AdS Kerr metric has a van der Waals type critical point with a line of first order phase transitions terminating at a critical point with mean field exponents. The phase structure and stability of black holes in higher dimensions will also be described.
Rather than writing down specific functional forms, one can generate inflation models via stochastic processes in order to explore generic properties of inflation models. I describe our explorations of the phenomenology of randomly-generated multi-field inflation models, both for canonical fields and for a braneworld-motivated scenario. Implications of some recent observational results, including BICEP2, will be discussed.
This talk will describe the Quasi-Steady State Cosmology proposed in 1993 by Fred Hoyle, Geoffrey Burbidge and Jayant Narlikar. Starting with the motivation for this exercise, a formal field theoretic framework inspired by Mach’s principle is shown to lead to this model. The model is a generalization of the classical steady state model in the sense that it is driven by a scalar field which causes creation in explosive form. Such ‘minicreation events’ lead to a universe with a long term de Sitter expansion superposed with oscillations of shorter time scales.
©2012 Institut Périmètre de Physique Théorique