Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Condensed Matter

This series consists of talks in the area of Condensed Matter.

Seminar Series Events/Videos

TBA
sep 16 2014 - 11:00am
Room #: 405
Speaker(s):
Scientific Areas:
TBA
sep 30 2014 - 3:30pm
Room #: 405
Speaker(s):
Scientific Areas:

 

Jeudi sep 11, 2014
Speaker(s): 

This has been a leading question in condensed matter physics since the discovery of the cuprate superconductors. In this talk I will review some of the DMRG and tensor network results for the ground states of these models. A key question I'll address is the issue of stripes: are the ground states striped? Do stripes compete with or induce d-wave superconductivity? Another question I'll address is: how well does 2D DMRG do in comparison with iPEPS and quantum Monte Carlo. I will also show recent results for a standard 3-band Hubbard model for the cuprates.

Collection/Series: 
Scientific Areas: 

 

Mardi sep 09, 2014
Speaker(s): 

Roughly speaking, Many-Body Localization (MBL) refers to the state of a material that fails to thermalize. Though MBL has mostly been studied in quenched disordered systems, several authors have recently proposed that this phase could be realized in clean (translation invariant) systems too. In this talk, I will discuss this idea and ask to which extent an MBL phase can indeed be expected in systems without quenched disorder. Hopefully, the discussion shed also some light on the localization-delocalization transition for more generic many-body systems. From joint work with W.

Collection/Series: 

 

Mardi sep 02, 2014
Speaker(s): 

We consider rather general spin-1/2 lattices with large coordination numbers Z.
Based on the monogamy of entanglement and other properties of the concurrence C,
we derive rigorous bounds for the entanglement between neighboring spins,
which show that C decreases for large Z. In addition, the concurrence C measures the deviation from mean-field behavior and can only vanish if the mean-field ansatz yields an exact ground state of the Hamiltonian. Motivated by these findings, we propose an improved mean-field ansatz by adding entanglement

Collection/Series: 
Scientific Areas: 

 

Mardi aoû 19, 2014
Speaker(s): 
Collection/Series: 
Scientific Areas: 

 

Mardi aoû 12, 2014
Speaker(s): 

We consider the problem of reconstructing global quantum states from local data. Because the reconstruction problem has many solutions in general, we consider the reconstructed state of maximum global entropy consistent with the local data. We show that unique ground states of local Hamiltonians are exactly reconstructed as the maximal entropy state. More generally, we show that if the state in question is a ground state of a local Hamiltonian with a degenerate space of locally indistinguishable ground states, then the maximal entropy state is close to the ground state projector.

Collection/Series: 
Scientific Areas: 

 

Mardi juil 08, 2014
Speaker(s): 
Collection/Series: 
Scientific Areas: 

 

Mardi mai 27, 2014
Speaker(s): 

In the past few years substantial evidence has been collected that points to coexistence of charge correlations with long range superconductivity in underdoped cuprate superconductors. In this talk I will review some of this evidence, then show that a charge density wave with precisely the same signatures is a natural instability of an antiferromagnetic metal, and finally derive some phenomenological consequences, with special focus on quantum oscillation experiments.

Collection/Series: 

 

Mardi mai 20, 2014

Non-Abelian anyons are widely sought for the exotic fundamental physics they harbor as well as for their possible applications for quantum information processing. Currently, there are numerous blueprints for stabilizing the simplest type of non-Abelian anyon, a Majorana zero energy mode bound to a vortex or a domain wall. One such candidate system, a so-called "Majorana wire" can be made by judiciously interfacing readily available materials; the experimental evidence for the viability of this approach is presently emerging.

Collection/Series: 
Scientific Areas: 

 

Mardi mai 13, 2014
Speaker(s): 

We present our recent numerical calculations for the Heisenberg model on the square and
Kagome lattices, showing that gapless spin liquids may be stabilized in highly-frustrated
regimes. In particular, we start from Gutzwiller-projected fermionic states that may
describe magnetically disordered phases,[1] and apply few Lanczos steps in order to improve
their accuracy. Thanks to the variance extrapolation technique,[2] accurate estimations of
the energies are possible, for both the ground state and few low-energy excitations.

Collection/Series: 
Scientific Areas: 

Pages